试题
题目:
(2012·闵行区二模)在四边形ABCD中,对角线AC⊥BD,那么依次连接四边形ABCD各边中点所得的四边形一定是( )
A.菱形
B.矩形
C.正方形
D.平行四边形
答案
B
解:如图所示:AC⊥BD,点E、F、G、H分别是边AB、BC、CD、DA的中点;
∵在△DAC中,根据三角形中位线定理知,HG∥AC且HG=
1
2
AC;
同理在△ABC中,EF∥AC且EF=
1
2
AC,
∴HG∥EF∥AC,且HG=EF,
∴四边形EFGH是平行四边形;
同理,HE∥DB;
又∵AC⊥BD,
∴HE⊥HG,
∴·EFGH是矩形;
故选B.
考点梳理
考点
分析
点评
三角形中位线定理;菱形的判定.
利用三角形中位线定理可以推知四边形EFGH是平行四边形;然后由三角形中位线定理、已知条件“AC⊥BD”推知HE⊥HG;最后由矩形判定定理“有一内角为直角是平行四边形是矩形”可以证得·EFGH是矩形.
本题考查了三角形中位线定理、矩形的判定定理.三角形的中位线平行于第三边且等于第三边的一半.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )