试题

题目:
青果学院如图,长方体的长BE=20cm,宽AB=10cm,高AD=15cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?
答案
青果学院解:将长方体沿CH、HE、BE剪开,向右翻折,使面ABCD和面BEHC在同一个平面内,连接AM,如图1,
由题意可得:MD=MC+CD=5+10=15cm,AD=15cm,
在Rt△ADM中,根据勾股定理得:AM=15
2
cm;
将长方体沿CH、C′D、C′H剪开,向上翻折,使面ABCD和面DCHC′在同一个平面内,连接AM,
如图2,
由题意得:BM=BC+MC=5+15=20(cm),AB=10cm,
在Rt△ABM中,根据勾股定理得:AM=10
5
cm,
连接AM,如图3,
由题意得:AC=AB+CB=10+15=25(cm),MC=5cm,
在Rt△ACM中,根据勾股定理得:AM=5
26
cm,
∵15
2
<10
5
<5
26

则需要爬行的最短距离是15
2
cm.
青果学院解:将长方体沿CH、HE、BE剪开,向右翻折,使面ABCD和面BEHC在同一个平面内,连接AM,如图1,
由题意可得:MD=MC+CD=5+10=15cm,AD=15cm,
在Rt△ADM中,根据勾股定理得:AM=15
2
cm;
将长方体沿CH、C′D、C′H剪开,向上翻折,使面ABCD和面DCHC′在同一个平面内,连接AM,
如图2,
由题意得:BM=BC+MC=5+15=20(cm),AB=10cm,
在Rt△ABM中,根据勾股定理得:AM=10
5
cm,
连接AM,如图3,
由题意得:AC=AB+CB=10+15=25(cm),MC=5cm,
在Rt△ACM中,根据勾股定理得:AM=5
26
cm,
∵15
2
<10
5
<5
26

则需要爬行的最短距离是15
2
cm.
考点梳理
平面展开-最短路径问题.
首先将长方体沿CH、HE、BE剪开,向右翻折,使面ABCD和面BEHC在同一个平面内,连接AM;或将长方体沿CH、C′D、C′H剪开,向上翻折,使面ABCD和面DCHC′在同一个平面内,连接AM,或将长方体沿AB、AF、EF剪开,向下翻折,使面CBEH和下面在同一个平面内,连接AM,然后分别在Rt△ADM与Rt△ABM与Rt△ACM,利用勾股定理求得AM的长,比较大小即可求得需要爬行的最短路程.
此题考查了最短路径问题,利用了转化的思想,解题的关键是将立体图形展为平面图形,利用勾股定理的知识求解.
找相似题