试题

题目:
青果学院(2009·乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为(  )



答案
C
解:由题意知,底面圆的直径AB=4,
故底面周长等于4π.
设圆锥的侧面展开后的扇形圆心角为n°,青果学院
根据底面周长等于展开后扇形的弧长得4π=
nπ×6
180

解得n=120°,
所以展开图中∠APD=120°÷2=60°,
因为半径PA=PB,∠APB=60°,
故三角形PAB为等边三角形,
又∵D为PB的中点,
所以AD⊥PB,在直角三角形PAD中,PA=6,PD=3,
根据勾股定理求得AD=3
3

所以蚂蚁爬行的最短距离为3
3

故选C.
考点梳理
平面展开-最短路径问题.
要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.
圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.
找相似题