试题
题目:
如图所示,圆柱形玻璃容器的高为18cm,底面周长为24cm,在外侧距下底1cm的点A处有一小蚂蚁,它在与自己相对的圆柱形容器的上口外侧距开口1cm的点B处发现一点点食物碎屑.
请问:蚂蚁爬到食物处的最近路线是多长?
答案
解:将圆柱的侧面展开,小蚂蚁到达目的地的最近距离为线段AB的长.
由勾股定理,AB
2
=AC
2
+BC
2
=12
2
+(18-1-1)
2
=400,
AB=20 cm.
解:将圆柱的侧面展开,小蚂蚁到达目的地的最近距离为线段AB的长.
由勾股定理,AB
2
=AC
2
+BC
2
=12
2
+(18-1-1)
2
=400,
AB=20 cm.
考点梳理
考点
分析
点评
平面展开-最短路径问题.
首先画出圆柱的侧面展开图,进而得到AC=12cm,BC=18-2=16cm,再利用勾股定理计算出AB长即可.
此题主要考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
找相似题
(2009·乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
(2005·贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是( )
(2004·济宁)如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从M点沿正方体的表面爬到D
1
点,蚂蚁爬行的最短距离是( )
(2010·郑州模拟)如图所示,有一根高为2.1m的木柱,它的底面周长为40cm,在准备元旦联欢晚会时,为了营造喜庆的气氛,老师要求小明将一根彩带从底柱向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( )
(2010·宁德模拟)如图,是一个棱长分别为2、3、4的长方体,一只蜘蛛在顶点A处,一只小昆虫在顶点B处,则蜘蛛接近小昆虫时所爬行的最短路线的长是( )