试题
题目:
如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C为2cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是
4
34
cm
4
34
cm
.
答案
4
34
cm
解:把右侧面展开到水平面上,连结AB,如图1,AB=
(10+20
)
2
+
2
2
=
904
=2
226
(cm);
把右侧面展开到正面上,连结AB,如图2,AB=
(10+2
)
2
+2
0
2
=
544
=4
34
(cm);
把向上的面展开到正面上,连结AB,如图3,AB=
1
0
2
+(20+2
)
2
=
584
=2
146
(cm).
所以一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离为4
34
cm.
故答案为4
34
cm.
考点梳理
考点
分析
点评
专题
平面展开-最短路径问题.
分三种情况讨论:把右侧面展开到水平面上,连结AB,如图1;把右侧面展开到正面上,连结AB,如图2;把向上的面展开到正面上,连结AB,如图3,然后利用勾股定理分别计算各情况下的AB,再进行大小比较.
本题考查了平面展开-最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
计算题.
找相似题
(2009·乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
(2005·贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是( )
(2004·济宁)如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从M点沿正方体的表面爬到D
1
点,蚂蚁爬行的最短距离是( )
(2010·郑州模拟)如图所示,有一根高为2.1m的木柱,它的底面周长为40cm,在准备元旦联欢晚会时,为了营造喜庆的气氛,老师要求小明将一根彩带从底柱向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( )
(2010·宁德模拟)如图,是一个棱长分别为2、3、4的长方体,一只蜘蛛在顶点A处,一只小昆虫在顶点B处,则蜘蛛接近小昆虫时所爬行的最短路线的长是( )