试题
题目:
如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )
A.10
B.
130
C.
73
+3
D.8+
3
2
答案
A
解:如图(1)所示:
AB=
3
2
+(8+3)
2
=
130
;
如图(2)所示:
AB=
6
2
+8
2
=10.
由于
130
>10,
所以最短路径为10.
故选A.
考点梳理
考点
分析
点评
专题
平面展开-最短路径问题.
将长方体纸箱按照不同方式展开,分别根据勾股定理求出不同展开图中AB的长,再找到其中最短者即为蚂蚁所行的最短路程.
本题考查了平面展开---最短路径问题,解题的关键是将长方体展开,构造直角三角形,然后利用勾股定理解答.
计算题.
找相似题
(2009·乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
(2005·贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是( )
(2004·济宁)如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从M点沿正方体的表面爬到D
1
点,蚂蚁爬行的最短距离是( )
(2010·郑州模拟)如图所示,有一根高为2.1m的木柱,它的底面周长为40cm,在准备元旦联欢晚会时,为了营造喜庆的气氛,老师要求小明将一根彩带从底柱向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( )
(2010·宁德模拟)如图,是一个棱长分别为2、3、4的长方体,一只蜘蛛在顶点A处,一只小昆虫在顶点B处,则蜘蛛接近小昆虫时所爬行的最短路线的长是( )