数学
(2011·湖州)如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.
(1)求点D的坐标(用含m的代数式表示);
(2)当△APD是等腰三角形时,求m的值;
(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)
(2011·来宾)如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.
(1)求点A、B的坐标;
(2)求抛物线的函数关系式;
(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.
(2011·龙岩)如图,已知抛物线
y=-
4
9
x
2
+bx+c
与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交于点D,AO=1.
(1)填空:b=
16
9
16
9
,c=
20
9
20
9
,点B的坐标为(
5
5
,
0
0
):
(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC的长;
(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由.
(2011·清远)如图,抛物线y=(x+1)
2
+k与x轴交于A、B两点,与y轴交于点C(0,-3)
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点M是抛物线上的一动点,且在第三象限.
①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;
②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.
已知二次函数图象的顶点为D(1,-4),且经过点A(-1,0).
(1)求该二次函数的关系式;
(2)设抛物线与x轴的另一个交点为B,与y轴的交点为C,试判断△BCD的形状,并说明理由;
(3)设经过B、C、D三点的圆的圆心为O′,设⊙O′与x轴的另一个交点为E,求线段BE的长.
如图,抛物线F:y=ax
2
+bx十c(a<0)与y轴交相交于点C(0.t).直线CD经过点C且平行于x轴,设直线CD与抛物线F的交点为点C、D.抛物线F与x轴的交点为点A,B,连接AC、BC.
(1)当a=-
1
2
,b=-
3
2
,t=2时,探究△ABC的形状,并说明理由.
(2)若△ABC为直角三角形,求t的值(用含a的式子表示).
(3)在(2)的条件下,若点B关于y轴的对称点B′.且BB′=BC,连接AD,求梯形ABCD的面积(用含a的式子表示).
如图,已知抛物线y=ax
2
-2ax+c与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.点E为线段BC上的动点(点E不与点B,C重合),以E为顶点作∠OEF=45°,射线ET交线段OB于点F.
(1)求出此抛物线函数表达式,并直接写出直线BC的解析式;
(2)求证:∠BEF=∠COE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)点P为抛物线的对称轴与直线BC的交点,点M在x轴上,点N在抛物线上,是否存在以点A、M、N、P为顶点的平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
已知函数y=x
2
+bx+c(x≥0),满足当x=1时,y=-1,且当x=0与x=4时的函数值相等.
(1)求函数y=x
2
+bx+c(x≥0)的解析式并画出它的图象(不要求列表);
(2)若f(x)表示自变量x相对应的函数值,且
f(x)=
x
2
+bx+c(x≥0)
-2(x<0)
又已知关于x的方程f(x)=x+k有三个不相等的实数根,请利用图象直接写出实数k的取值范围.
已知:如图,抛物线y=ax
2
-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标.
已知如图抛物线l
1
与x轴的交点的坐标为(-1,0)和(-5,0),与y轴的交点坐标为(0,2.5).
(1)求抛物线l
1
的解析式;
(2)抛物线l
2
与抛物线l
1
关于原点对称,现有一身高为1.5米的人撑着伞与抛物线l
2
的对称轴重合,伞面弧AB与抛物线l
2
重合,头顶最高点C与伞的下沿AB在同一条直线上(如图所示不考虑其他因素),如果雨滴下降的轨迹是沿着直线y=mx+b运动,那么不被淋到雨的m的取值范围是多少?
(3)将伞的下沿AB沿着抛物线l
2
对称轴上升10厘米至A
1
B
1
,A
1
B
1
比AB长8厘米,抛物
线l
2
除顶点M不动外仍经过弧A
1
B
1
(其余条件不变),那么被雨淋到的几率是扩大了还是缩小了,说明理由.
第一页
上一页
63
64
65
66
67
下一页
最后一页
937976
937977
937978
937979
937980
937981
937982
937983
937984
937985