数学
已知,如图,抛物线y=ax
2
-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.
如图:在平面直角坐标系中,抛物线y=ax
2
+bx+3与y轴的交点为D,与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)求a,b的值;
(2)写出顶点C的坐标为
(-1,4)
(-1,4)
;
(3)计算四边形ACDO的面积;
(4)在y轴上是否存在点F,使得△ACF是以AC为斜边的直角三角形?若存在,求出点F的坐标;若不存在,说明理由.
已知抛物线y=ax
2
+bx+3交x轴于点A(x
1
,0)、B(-1,0)且x
1
>0,AO
2
+BO
2
=10,抛物线交y轴于点C,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)证明△ADC是直角三角形;
(3)第一象限内,在抛物线上是否存在一点E,使∠ECO=∠ACB?若存在,求出点E的坐标.
如图,在平面直角坐标系xOy中,点A的坐标为(1,
3
),点B在x轴的负半轴上,且∠AB0=30°,抛物线经过A,O,B三点.
(1)求抛物线的解析式及对称轴;
(2)在抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)在x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOD面积之比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.
如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O,M两点,OM=4,矩形ABCD的边BC在线段OM上,点A,D在抛物线上.
(1)写出P,M两点的坐标,并求出抛物线的函数表达式;
(2)设矩形ABCD的周长为L,求L的最大值;
(3)当矩形ABCD的周长最大时,在抛物线的对称轴上是否存在点E,使得△DME的周长最小?如果存在,请写出E点坐标及△DME的周长最小值;如果不存在,请简要说明你的理由.
如图,二次函数图象的顶点为坐标系原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y轴相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标;
(3)当点D在直线AC上的一个动点时,以点O、C、D、E为顶点的四边形能成为平行四边形吗?请说明理由.
如图所示,平面直角坐标系中,抛物线y=-
1
3
x
2
+
4
3
x+4交y轴于A,分别交X轴的负半轴、正半轴于B、C两点,过点A作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为点E.点M是四边形OADE的对角线的交点,点F在y轴负半轴上,且F(0,-2).
(1)当点P、Q分别从C、F两点同时出发,均以每秒1个长度单位的速度沿CB、FA方向运动,点P运动到O时P、Q两点同时停止运动.设运动的时间为t秒.在运动过程中,以P、Q、O、M四点为顶点的四边形的面积为S,求出S与t之间的函数关系式,并写出自变量的取值范围;
(2)在抛物线上是否存在点N,使以B、C、F、N为顶点的四边形是梯形?若存在,直接写出点N的坐标;不存在,说明理由.
(3)在运动过程中,当点P、Q分别从C、F两点同时出发,点P以每秒1个长度单位的速度沿CB方向运动,点
Q以某一速度沿FA方向运动,当点P运动时间t=1.5时,∠PDQ=45°,求点Q的运动速度.
抛物线y=ax
2
+bx+c过点A(-1,0)点B(3,0),其开口向
上,点C是抛物线与y轴的交点,且OC=3OA.
(1)求抛物线的解析式;
(2)如图①,将抛物线x轴下方的部分沿x轴对折交y轴于点C,若直线y=-x+b与翻折后的曲线的交点数为两个,求b的取值范围;
(3)如图②,过点B作BD⊥x轴,交AC的延长线于点D,设点C的上方有一点P(0,t),且△PAD的面积为15,若将抛物线沿其对称轴上下平移,使抛物线与△PAD总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
如图,在平面直角坐标系中,点B的坐标为(-8,0),△ABO是直角三角形,且OA=10,将△ABO
绕点O顺时针旋转90°,得到△A′B′O
(1)求点A′的坐标;
(2)连接AA′,求△AOA′的面积;
(3)抛物线y=ax
2
+bx+c经过点A′、B′和点C(-1,1),求此抛物线的解析式;
(4)若P是(3)中的抛物线中直线A′O上方的一点,求点P到OA′的最大距离.
已知一次函数y=
1
2
x+1
的图象与x轴交于点A.与y轴交于点B;二次函
数
y=
1
2
x
2
+bx+c
图象与一次函数y=
1
2
x+1
的图象交于B、C两点,与x轴交于D、E两点且D的坐标为(1,0)
(1)求二次函数的解析式;
(2)在x轴上是否存在点P,使得△PBC是直角三角形?若存在,求出所有的点P,若不存在,请说明理由.
第一页
上一页
49
50
51
52
53
下一页
最后一页
937836
937837
937838
937839
937840
937841
937842
937843
937844
937845