数学
百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价2.5元,那么平均每天就可多售出5件.
(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
(2)当降价多少时,能获得最大利润?最大利润是多少?
把一个小球垂直向上抛出,t(s)后小球离上抛点的高度h(m)所满足的函数关系式为:h=24t-5t
2
,经过多少时间后,小球离上抛点的高度是16m?
某商场将进价为30元的台灯以40元售出,平均每月能售出600个,调查表明:这种台灯的售价每上涨1元,其销售量就减少10个.
(1)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯个?
(2)如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多个?
某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少卖10件,设每件商品上涨x元,每个月的销售利润为y元.
(1)求y与x的关系式并化为y=ax
2
+bx+c的形式;
(2)当售价定为多少元时,商场每月可获利2160元?
(3)售价定为多少元时,商场所获的利润最大?最大利润是多少?
衢江区某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价 w
1
与上市时间t的关系用图甲的一条折线表示;西红柿的种植成本 w
2
与上市时间t的关系用图乙表示的抛物线段表示.
(1)求出图甲表示的市场售价 w
1
与时间t的函数关系式;
(2)求出图乙表示的种植成本 w
2
与时间t的函数关系式;
(3)市场售价减去种植成本为纯收益,当0<t≤200时,何时上市西红柿纯收益最大?(售价与成本单位:元/百千克,时间单位:天)
某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现单价为60元时,年销售量可达5万件;若价格上涨,相应销量就会减少;当单价为80元时,销售量降至4万件,设销售单价为x元.(x>60)
①用含x的代数式表示出年销售量;
②当单价定为多少元时,年销售获利可达40万元?
③当销售单价x为何值时,年获利最大?并求出这个最大值.
用长为100cm的铁丝做一个矩形框子.
(1)能做成矩形框的面积为800cm
2
吗?如果能求出长和宽,如果不能请说明理由.
(2)请说明能围成的矩形最大面积是多少?为什么?
在高尔夫球比赛中,某运动员打出的球在空中飞行高度h(m) 与打出后飞行的时间t(s)之间的关系是h=7t-t
2
.
(1)经过多少秒钟,球飞出的高度为10m;
(2)经过多少秒钟,球又落到地面.
已知:如图,斜坡PQ的坡度i=1:
3
,在坡面上点O处有一根1m高且垂直于水平面的水管OA,顶端A处有一旋转式喷头向外喷水,水流在各个方向沿相同的抛物线落下,水流最高点M比点A高出1m,且在点A测得点M的仰角为30°,以O点
为原点,OA所在直线为y轴,过O点垂直于OA的直线为x轴建立直角坐标系.设水喷到斜坡上的最低点为B,最高点为C.
(1)写出A点的坐标及直线PQ的解析式;
(2)求此抛物线AMC的解析式;
(3)求|x
C
-x
B
|;
(4)求B点与C点间的距离.
某商店按进货价每件6元购进一批货,零售价为8元时,可以卖出100件,如果零售价高于8元,那么一件也卖不出去,零售价从8元每降低0.1元,可以多卖出10件.设零售价定为x元(6≤x≤8).
(1)这时比零售为8元可以多卖出几件?
(2)这时可以卖出多少件?
(3)这时所获利润y(元)与零售价x(元)的关系式怎样?
(4)为零售价定为多少时,所获利润最大?最大利润是多少?
第一页
上一页
135
136
137
138
139
下一页
最后一页
956115
956116
956118
956120
956121
956123
956125
956127
956129
956132