数学
一座抛物线拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部3m时,水面宽6m,当水位上升1m时,水面宽多少m(结果保留根号).
如图是一个抛物线拱桥的横截面,水面宽度AB=40米,水面离拱桥的最大高度OC为16米.现有一艘宽20米,高出水面11米的轮船.请通过计算说明这艘船能否通过这座拱桥?
如图所示,有一城门洞呈抛物线形,拱高为4m(最高点到地面的距离),把它放在直角坐标系中,其解析式为y=-x
2
.
(1)求城门洞最宽处AB的长;
(2)现在有一高2.6m,宽2.2m的小型运货车,问它能否完全通过此城门?请说明理由.
“百诚”公司投资750万元,成功研制出一种市场需求量较大的产品,并再投入资金1750万元进行相关生产设备的购买.已知生产过程中,每件产品的成本为60元.在销售过程中发现,当销售单价定为120元时,年销售量为24万件;销售单价每增加10元,年销售量将减少1万件.设销售单价为x(元)(x>120),年销售量为y(万件),第一年年获利(年获利=年销售额-生产成本-投资)为z(万元).
(1)请直接写出y与x之间,z与x之间的函数关系式:
y=-
1
10
x+36
y=-
1
10
x+36
,
z=-
1
10
x
2
+42x-4660
z=-
1
10
x
2
+42x-4660
;
(2)计算销售单价为200元时的第一年年获利,请问公司此时亏损还是盈利?并说明为了得到同样的年获利,销售单价还可以定为多少元?
(3)公司计划:在第一年按年获利最大时确定的销售单价进行销售;第二年后总获利要不低于1840万元.请说明,第二年的销售单价x应确定在什么范围内.
某商品的进价为每件90元.最初售价为每件100元,后来提价销售.经统计售价与月销售量,得到下列数据表:
售价(元/件)
100
101
102
103
…
月销售量(件)
500
490
480
470
…
(1)猜测月销售量(y)与售价(x)之间的函数关系式?
(2)求利润(w)与销售价(x)之间的函数关系式?
(3)当x为何值时,利润最大?最大利润是多少?
如图所示,一单杠高2.2m,两立柱间的距离为1.6m,将一根绳子的两端拴于立柱与铁杠的结合处A、B,绳子自然下垂,虽抛物线状,一个身高0.7m的小孩站在距立柱0.4m处,其头部刚好触上绳子的D处,求绳子的最低点O到地面的距离.
2009年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2010年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价-成本价)×年销售量)
(1)求2010年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系.
(2)该厂要是2010年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?
(2007·贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
(2007·呼伦贝尔)某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.现要求加工甲种零件的人数不少于加工乙种零件人数的2倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?
(2007·济宁)某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.设每块绿化区的长边为x m,短边为y m,工程总造价为w元.
(1)写出x的取值范围;
(2)写出y与x的函数关系式;
(3)写出w与x的函数关系式;
(4)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(参考数据:
3
≈1.732)
第一页
上一页
124
125
126
127
128
下一页
最后一页
955968
955969
955970
955971
955972
955973
955974
955975
955976
955977