数学
某种产品进价为120元,在试销阶段发现每件售价(元)与产品的日销售量(件)始终存在下表关系:
每件售价(元)
140
150
170
175
每日销售量(件)
60
50
30
25
(1)请你根据上表信息表示出每件售价提高的金额(元)与日销售减少的数量(件)间的关系.
(2)依据上面的信息,请帮助经销商策划每件商品售价是多少元时,每日盈利可达1600元?
萧山某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.
(1)商家降价后的售价为x元,每星期的销售利润为y元,求y关于x的函数解析式;
(2)商家计划通过降价促销后,使每星期的销售利润达2600元,请问商家的计划能否实现?如果能,请给出销售方案;如果不能,请说明理由.
某水果店批发一种成本为每箱30元的柚子,据市场分析,若按每箱40元批发,一个月能批发500箱;若每箱批发价涨1元,月批发量就减少10箱,若批发价定为每箱x元,月利润为y元
(1)求月利润(y)与批发价(x)的函数关系式.
(2)当批发价定为每箱多少元时,月利润y最大,最大利润是多少元?
某商店经销一种销售成本为30元/kg的海鲜产品.据市场调查,若按40元/kg销售,一个月能售出1500kg;销售单价每降1元,月销售量就会增加400kg.商店经理计划既要使月销售利润达到17500元,又要使价格对顾客更具有吸引力,则销售单价应定为多少?
(1)若定价为每千克x元,则每千克的利润为
x-30
x-30
元,此时的月销售量为
1500+400(40-x)
1500+400(40-x)
千克.
(2)请根据以上信息,解应用题.
某校九年级(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,为了使设计出的长方形框架面积最大.小组讨论后,同学们做了以下三种试验:
请根据以上图案回答下列问题:
(1)在图案(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为6米,当竖档AB长为1米,求长方形框架ABCD的面积;
(2)在图案(2)中,如果铝合金材料总长度为6米,设竖档AB为x米,求长方形框架ABCD的面积S(用含x的代数式表示),并指出当AB为多少米时,长方形框架ABCD的面积S最大;
(3)在图案(3)中,如果铝合金材料总长度为a米,设竖档AB为x米,求当AB为多少米时,长方形框架ABCD的面积S最大.
(4)探索:如图(4),如果铝合金材料总长度为a米,AD边上共有n条竖档时,请直接写出当竖档AB长为多少米时,长方形框架ABCD的面积最大,最大值为多少.
某商场将进价为2000元的冰箱以2400元出售,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的数量是y台,请写出y与x之间的函数关系式;(不要求写自变量的取值范围)
(2)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数关系式;(不要求写自变量的取值范围)
(3)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
物业管理部门为了美化环境,在小区靠墙的一侧设计了一处长方形花圃(墙长25m),三边外围用篱笆
围起,栽上蝴蝶花,共用篱笆40m,
(1)设花圃的宽为x米,请你用含x的代数式表示花圃的长;
(2)花圃的面积能达到200m
2
吗?
(3)花圃的面积能达到250m
2
吗?如果能,请你给出设计方案;如果不能,请说明理由.
(4)你能根据所学过的知识求出花圃的最大面积吗?此时,篱笆该怎样围?
小张同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
问:小张如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)
如图,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm∕s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经几秒钟,使△PBQ的面积等于8cm
2
?在移动过程中,△PBQ的最大面积是多少?
某商店购进一批单价为20元的日用商品,如果以单价30元销售那么半月内可售出400件,根据销售经验,推广销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.
(1)销售单价提高多少元,可获利4480元.
(2)如何提高售价,才能在半月内获得最大利润?
第一页
上一页
122
123
124
125
126
下一页
最后一页
955948
955949
955950
955951
955952
955953
955954
955955
955956
955957