数学
在△ABC中,AB=BC=4,∠ABC=90°,P是斜边AC上的一个动点,D为BC上
的一点,且PB=PD,ED⊥AC垂足为E.
(1)如图(1)试确定PE与AC之间的数量关系
PE=
1
2
AC
PE=
1
2
AC
(2)如图(2)在(1)的条件下,若P点在AC的延长线上时,(1)中结论是否成立?如果成立,请给予证明.
(3)如图(1)当AP=1时,四边形PBDE的面积为
3
2
3
2
平方单位(直接写出结果,不要求解答过程).
计算:
①
(
1
2
)
-2
-|2
2
-3|+
3
18
;
②如图,△ABC中,∠ACB=90°,AB=
8
,BC=2,求斜边AB上的高CD.
③已知:
a=
1
2+
3
,求
a
2
-a-6
a+2
-
a
2
-2a+1
a
2
-a
的值.
已知,等腰Rt△ABC中,点O是斜边的中点,△MPN是直角三角形,固定△ABC,滑动△MPN,在滑动过程中始终保持点P在AC上,且PE⊥AB,PF⊥BC,垂足分别为E、F.
(1)如图1,当点P与点O重合时,OE、OF的数量和位置关系分别是
相等且垂直
相等且垂直
.
(2)当△MPN移动到图2的位置时,(1)中的结论还成立吗?请说明理由.
(3)如图3,等腰Rt△ABC的腰长为6,点P在AC的延长线上时,Rt△MPN的边PM与AB的延长线交于点E,直线BC与直线NP交于点F,OE交BC于点H,且 EH:HO=2:5,则BE的长是多少?
同学拿了两块45°三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.
(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为
4
4
,周长为
4+4
2
4+4
2
.
(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为
4
4
,周长为
8
8
.
(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为
4
4
.
(4)在如图3的情况下,AC交MN于D,MK交BC于E,若AD=1,求出重叠部分图形的周长.
(2011·鞍山一模)如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以2cm/s的速度、沿B→A→D→C方向,向点C运动;动点Q从点C出发,以2cm/s的速度、沿C→D→A方向,向点A运动.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.
问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由;
②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
(2011·武汉模拟)在等腰△ABC中,AB=AC,边AB绕点A逆时针旋转角度m得到线段AD.
(1)如图1,若∠BAC=30°,30°<m<l80°,连接BD,请用含m的式子表示∠DBC的度数;
(2)如图2,若∠BAC=60°,0°<m<360°,连接BD、DC,直接写出△BDC为等腰三角形时m所有可能的取值.
(3)如图3,若∠BAC=90°,射线AD与直线BC相交于点E,是否存在旋转角度m,使AE:BE=
2
,若存在,求出所有符合条件的m的值,若不存在,请说明理由.
如图,在等腰Rt△ABC中,D是斜边BC的中点,E在边AB上,F在边AC上,且∠EDF=90°.
(1)当E在何处时,线段EF的长最短;
(2)根据(1)的推理过程及所学知识,请你写出该题的一个变式.(不要求证明)
如图,在直角梯形ABCD中,AB∥DC,∠B=90°.E是BC上的一点,连接AE、DE,△AED是等腰直角
三角形.
(1)若△AED的面积是
25
2
,△ABE的面积是6,求△ABE的周长.
(2)若△AED的面积是a,直角梯形ABCD的面积是b,且AB=EC,BE=DC.试判断b与2a的大小,并说明理由.
如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于点D,CE⊥AE于点E.
(1)求证:BD=DE+CE;
(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何,请证明;
(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.
(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.
如图,在直角三角形ABC和直角三角形ADE中,AB=AC,AD=AE,CE与BD交于点M,BD交AC于N.
①求证:BD=CE;
②求证:BD⊥CE;
③当三角形ABC绕点A顺时针方向旋转到如图②的位置时,上述结论是否成立?请选择一个结论给予证明.
第一页
上一页
2
3
4
5
6
下一页
最后一页
963622
963623
963624
963625
963626
963627
963628
963629
963630
963631