数学
如图,已知在正方形ABCD中,P为BC上的一点,E是边BC延长线上一点,连接AP过点P作PF⊥
AP,与∠DCE的平分线CF,相交于点F,连接AF,与边CD相交于点G,连接PG.
(1)求证:①∠PAB=∠FPC;②AP=FP;
(2)试判断PB、DG、PC,这三条线段存在怎样的数量关系,并说明理由.
如图,正方形ABCD中,点E从点A出发沿着线段AD向点D运动(点E不与点A、点D重合),同时,点F从点D出发沿着线段DC向点C运动(点F不与点D点、点C重合),点E与F点运动速度相同,当点E停止运动时,另一动点F也随之停止运动,设B
E和AF相交于点P,连接PC,请探究:
(1)AF和BE有怎样的位置关系?试说明理由;
(2)当点E运动到AD中点位置时,PA:PB是多少?
(3)当点F运动到DC中点位置时,PC和BC有怎样的数量关系?并证明你的结论.
(1)如图1,现有一正方形ABCD,将三角尺的指直角顶点放在A点处,两条直角边也与CB的延长线、DC分别交于点E、F.请你通过观察、测量,判断AE与AF之间的数量关系,并说明理由.
(2)将三角尺沿对角线平移到图2的位置,PE、PF之间有怎样的数量关系,并说明理由.
(3)如果将三角尺旋转到图3的位置,PE、PF之间是否还具有(2)中的数量关系?如果有,请说明理由.如果没有,那么点P在AC的什么位置时,PE、PF才具有(2)中的数量关系.
如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE
的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
如图,正方形ABCD中,AC为对角线,E、F分别是边AB、AD上的两点,且CE=CF.
(1)求证:AE=AF;
(2)若tan∠ACF=
1
2
,求tan∠BCE的值.
如图,在△ABC中,D是AC的中点,E是线段BC延长线上的一点,过点A作AF∥BE,交ED的延长线于点F,连接AE,CF.
(1)求证:AF=CE;
(2)如果AC=EF,则四边形AFCE是矩形.
在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE;
(2)若DE=
1
2
BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.
已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.
已知如图,等腰梯形ABCD,AB=CD,BE=CE,求证:AE=DE.
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且ED平分∠ADC,EC平分∠BCD.
求证:(1)AE=BE; (2)CD=AD+BC.
第一页
上一页
24
25
26
27
28
下一页
最后一页
968669
968670
968671
968672
968673
968674
968675
968676
968677
968678