数学
(1997·甘肃)如图,D是△ABC外接圆上的一点,且BD=DC=6cm,连接AD交BC于M,如果AM=9cm,求AD的长.
(2012·德城区三模)操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:
说明:
方案一:图形中的圆过点A、B、C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点
纸片利用率=
纸片被利用的面积
纸片的总面积
×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.
你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.
请帮忙计算方案二的利用率,并写出求解过程.
探究:
(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
说明:方案三中的每条边均过其中两个正方形的顶点.
(2013·莘县二模)如图,AB为⊙O的直径,过半径OA的中点G作弦CE⊥AB,在
CB
上取一点D,直线CD、ED分别交直线AB于点F和M.
(1)求∠COA和∠FDM的度数;
(2)已知OM=1,MF=3,请求出⊙O的半径并计算tan∠DMF的值.
(2013·宁波模拟)如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.
(1)求量角器在点G处的读数α(0°<α<90°);
(2)若AB=10cm,求阴影部分面积.
(2005·泸州)如图,在⊙O中,弦AB与DC相交于E,且AE=EC,求证:AD=BC.
(2005·辽宁)如图,⊙O的弦AB=10,P是弦AB所对优弧上的一个动点,tan∠APB=2,
(1)若△APB为直角三角形,求PB的长;
(2)若△APB为等腰三角形,求△APB的面积.
(2005·常德)有一个未知圆心的圆形工件.现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法.
(2004·内江)如图,∠BAC的平分线AE交BC于点D,交△ABC的外接圆于点E.求证:BE
2
=ED·EA.
(2004·锦州)如图,⊙O与⊙P相交于B、C两点,BC是⊙P的直径,且把⊙O分成度数的比为1:2的两条弧,A是
BmC
上的动点(不与B、C重合),连接AB、AC分别交⊙P于D、E两点.
(1)当△ABC是锐角三角形(图①)时,判断△PDE的形状,并证明你的结论;
(2)当△ABC是直角三角形、钝角三角形时,请你分别在图②、图③中画出相应的图形(不要求尺规作图),并按图①标记字母;
(3)在你所画的图形中,(1)的结论是否成立?请就钝角的情况加以证明.
(2004·常州)如图,A、B、C、D是⊙O上的四点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长.
第一页
上一页
77
78
79
80
81
下一页
最后一页
1315547
1315552
1315562
1315571
1315577
1315581
1315589
1315593
1315597
1315602