数学
(2009·怀化)如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.
求证:
(1)PE=PF;
(2)点P在∠BAC的角平分线上.
(2011·下关区一模)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.
①求证:△ABP≌△ACQ;
②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.
(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.
(2011·万州区模拟)如图,两条国道OA、OB在我市交汇于O,在∠AOB的内部C、D处各有一个工厂.现要修建一个货站P,使货站P到两条国道OA、OB的距离相等,到C厂、D厂的距离也相等,请在图中画出货站P的位置.(要求:用圆规直尺作图,保留作图痕迹,不写已知、求作和作法).
(2011·河南三模)(1)填空:如图,Rt△ABC中,∠C=90°,∠B=45°,AD是△ABC的角平分线,过点D作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为
AB=AC+CD
AB=AC+CD
.
(2)如图,若将(1)中条件“Rt△ABC中,∠C=90°,∠B=45°”改
为“△ABC中,∠C=2∠B”请问(1)中的结论是否仍然成立?证明你的猜想.
(2010·长宁区二模)如图,△ABC中,∠B的平分线BD与∠C的外角平分线CE交于点P.求证:点P到三边AB、BC、CA所在的直线的距离相等.
(1)如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?
(2)如图,若点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜想线段DE、DB、EC之间有何数量关系?证明你的猜想.
如图,△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD的平分线上一点,EB=EC,过点E作EF⊥AC于F,EG⊥AD于G.
(1)求证:△EGB≌△EFC;
(2)若AB=3,AC=5,求AF的长.
如图(1),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F.
(1)求证:CE=CF;
(2)若AD=
1
4
AB,CF=
1
3
CB,△ABC、△CEF、△ADE的面积分别为S
△ABC
、S
△CEF
、S
△ADE
,且S
△ABC
=24,则S
△CEF
-S
△ADE
=
2
2
;
(3)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示,试猜想:BE′与CF有怎样的数量关系?并证明你的结论.
在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:
①∠AED+∠AFD=180°;②DE=DF.
那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:
(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相
等,请证明;否则请举出反例.
(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)
已知:如图,在Rt△ABC中,∠A=90°,CD平分∠ACB交边AB于点D,DE⊥BC垂足为E,AD=
1
2
BD.求证:BE=CE.
第一页
上一页
1
2
3
4
5
下一页
最后一页
1108285
1108288
1108290
1108292
1108294
1108296
1108298
1108300
1108302
1108305