数学
如图,在平面直角坐标系中,以(1,0)为圆心的⊙
P与y轴相切于原点O,过点A(-1,0)的直线AB与⊙P相切于点B.
(1)求AB的长;
(2)求AB、OA与
OB
所围成的阴影部分面积(不取近似值);
(3)求直线AB的解析式;
(4)直线AB上是否存在点M,使OM+PM的值最小?如果存在,请求出点M的坐标;如果不存在,请说理.
如图,△OAB是边长为
2+
3
的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB边上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A'的坐标和直线A′F所对应的函数关系式;
(2)在OB上是否存在点A′,使四边形AFA′E是菱形?若存在,请求出此时点A′的坐标;若不存在,请说明理由;
(3)当点A′在OB上运动但不与点O、B重合,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.
已知,在平面直角坐标系中,点A的坐标为(0,6),点B和点C在x轴上(点B在点C的左边,点C在原点的右边),作BE⊥AC,垂足为E(点E与点A不重合),直线BE与y轴交于点D,若BD=AC.
(1)建立直角坐标系,按给出的条件画出图形;
(2)求点B的坐标;
(3)设OC长为m,△BOD的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.
如图,在平面直角坐标系中,点P(x,y)是第一象限直线y=-x+6上的点,点A(5,0),O是坐标原点,△PAO的面积为s.
(1)求s与x的函数关系式,并写出x的取值范围;
(2)探究:当P点运动到什么位置时△PAO的面积为10.
如图,平面直角坐标系中,四边形OABC为直角梯形,CB∥OA,∠OCB=90°,CB=1,AB=
5
,直线
y=-
1
2
x+1
过A点,且与y轴交于D点
(1)求点A、点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.
(2002·吉林)如图,菱形OABC的边长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O·A·B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O·A·B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米.
请你回答下列问题:
(1)当x=3时,y的值是多少?
(2)就下列各种情形,求y与x之间的函数关系式:
①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8;
(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.
(2001·绍兴)在平面直角坐标系xOy中,已知A(-2,0),B(3,0),C(5,6),过点C作x轴的平行线交y轴于点D.
(1)若直线y=kx+b过B、C两点,求k、b的值.
(2)如图,P是线段BC上的点,PA交y轴于点Q,若点P的横坐标为4,求S
PCDQ
;
(3)设点E在线段DC上,AE交y轴于点F,若∠CEB=∠AFB,求cos∠BAE的值.
(2000·黑龙江)在直角坐标系中,点O
1
的坐标为(1,0),⊙O
1
与x轴交于原点O和点A,又点B、C的坐标分别为(-1,0)、(0,b),且0<b<3,直线l是过B、C点的直线.
(1)当点C在线段OC上移动时,过点O
1
作O
1
D⊥直线l,交l于点D,若
S
△BOC
S
△BD
O
1
=a
,试求a、b的函数关系式及a的取值范围;
(2)当D点是⊙O
1
的切点时,求直线l的解析式.
(1999·海淀区)如图,在矩形ABCD中,AB=4,BC=7,P是BC边上与B点不重合的动点,过点P的直线交CD的延长线于R,交AD于Q(Q与D不重合),且∠RPC=45°,设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系,并求自变量x的取值范围.
(1997·海淀区)如图,周长为24的凸五边形ABCDE被对角线BE分为等腰三角形ABE及矩形BCDE,且AB=AE=ED.设AB的长为x,CD的长为y,求y与x之间的函数关系式,写出自变量x的取值范围,并在所给的坐标系中画出这个函数的图象.
第一页
上一页
22
23
24
25
26
下一页
最后一页
1023416
1023418
1023420
1023423
1023425
1023428
1023431
1023433
1023435
1023437