试题
题目:
(1997·海淀区)如图,周长为24的凸五边形ABCDE被对角线BE分为等腰三角形ABE及矩形BCDE,且AB=AE=ED.设AB的长为x,CD的长为y,求y与x之间的函数关系式,写出自变量x的取值范围,并在所给的坐标系中画出这个函数的图象.
答案
解:∵四边形BCDE是矩形,
∴BC=ED,BE=CD.
∵AB=AE=ED=x,CD=y,
∴BC=x,BE=y.
∵凸五边形ABCDE的周长为24,
∴y=24-4x.
∵AB-AE<BE<AB+AE,
∴0<24-4x<2x.
∴自变量x的取值范围是4<x<6.
函数的图象如图.
解:∵四边形BCDE是矩形,
∴BC=ED,BE=CD.
∵AB=AE=ED=x,CD=y,
∴BC=x,BE=y.
∵凸五边形ABCDE的周长为24,
∴y=24-4x.
∵AB-AE<BE<AB+AE,
∴0<24-4x<2x.
∴自变量x的取值范围是4<x<6.
函数的图象如图.
考点梳理
考点
分析
点评
专题
一次函数综合题.
由四边形BCDE是矩形可知BC=ED,BE=CD,再根据AB=AE=ED=x,CD=y,可得出BC=x,BE=y.因为凸五边形ABCDE的周长为24,所以可得出y与x的函数关系式,根据三角形的三边关系可得出x的取值范围,由x的取值范围画出函数图象即可.
本题考查的是一次函数综合题,涉及到矩形的性质、三角形的三边关系等相关知识,难度适中.
探究型.
找相似题
(2011·仙桃)如图,已知直线l:y=
3
3
x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A
1
;过点A
1
作y轴的垂线交直线l于点B
1
,过点B
1
作直线l的垂线交y轴于点A
2
;…;按此作法继续下去,则点A
4
的坐标为( )
(2009·宁波)如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
(2013·温州二模)如图,P为正比例函数y=2x图象上的一个动点,⊙P的半径为2,圆心P从点(-3,-6),开始以每秒1个单位的速度沿着直线y=2x运动,当⊙P与直线x=2相切时,则该圆运动的时间为( )秒.
(2013·天桥区二模)如图,在平面直角坐标系中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则下列各点在直线l上的是( )
(2013·乐山模拟)如图,已知A、B两点的坐标分别为(8,0)、(0,-6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是( )