数学
如图,把矩形ABCD纸片折叠,使点B落在点D处,点C落在C′处,折痕EF与BD交于点O,已知AB=16,AD=12,求折痕EF的长.
在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究:
(1)如图(1)把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和;
(2)如图(2)把△CDE沿DE折叠覆盖∠A,则求∠1+∠2的和;
(3)如图(3)把△CDE沿DE斜向上折叠,探求∠1、∠2、∠C的关系.
动手操作,探究填空:
请准备一个锐角三角形的纸片,三个顶点分别标上字母A、B、C,并标出AB边的中点D及AC边的中点E.
(1)把△ABC沿DE对折,观察点A是否落在边BC上?
答:点A
在
在
(填“在”或“不在”)边BC上;
(2)在(1)的基础上将△ACE对折,使线段CE与EA重合,此时点A是否与点C重合折出的图形中有几个直角?
答:点A与点C
重合
重合
(填“重合”或“不重合”);图形中有
2
2
个直角;
(3)在(1)(2)的基础上将△ADB对折,使线段DB与DA重合,观察折得的图形,说出新图形的名称是
长方
长方
形;
(4)经过以上折叠,原△ABC的三个内角是否合并到一起了?这又说明何道理?
答:原△ABC的三个内角
已经
已经
合并到一起;(填“已经”或“没有”)
说明的道理是:
三角形的内角和为180°
三角形的内角和为180°
.
如图,将一张矩形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C′的位置上.
(1)若∠BFE=65°,求∠AEB的度数;
(2)若AD=9cm,AB=3cm,求DE的长.
如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.
如图,将一条宽DE=4的长方形纸片按任意线段AB折叠,使纸片的一边BE折叠后与另一边AF交于点C.
(1)求证:△ABC为等腰三角形;
(2)试探索:△ABC能否是等腰直角三角形?若能,求出折痕AB的长;若不能,说明理由.
我们知道三角形的一条中线能将这个三角形分成面积相等的两个三角形,反之,若经过三角形的一个顶点引一条直线将这个三角形分成面积相等两个三角形,那么这条直线平分三角形的这个顶点的对边.如图1,若S
△ABD
=S
△ADC
,则BD=CD成立.
请你直接应用上述结论解决以下问题:
(1)已知:如图2,AD是△ABC的中线,沿AD翻折△ADC,使点C落在点E,DE交AB于F,若△ADE与△ADB重叠部分面积等于△ABC面积的
1
4
,问线段AE与线段BD有什么关系?在图中按要求画出图形,并说明理由.
(2)已知:如图3,在△ABC中,∠ACB=90°,AC=2,AB=4,点D是AB边的中点,点P是BC边上的任意一点,连接PD,沿PD翻折△ADP,使点A落在E,若△PDE与△PDB重叠部分的面积等于△ABP面积的
1
4
,直接写出BP
2
的值.
如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,若将AC沿AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.
小明剪了一些直角三角形纸片,他取出其中的几张进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为 DE.如果∠CAD:∠CDA=1:2,CD=1cm,试求AB的长.
操作二:如图2,小明拿出另一张Rt△ABC纸片,将其折叠,使直角边AC落在斜边AB上,且与AE重合,折痕为AD.已知两直角边AC=6cm,BC=8cm,请你求出CD的长.
操作三:如图3,小明又拿出另一张Rt△ABC纸片,将纸片折叠,折痕CD⊥AB于D.请你说明:BC
2
+AD
2
=AC
2
+BD
2
.
如图,在长方形纸片ABCD中,AD=8cm,AB=4cm沿EF折叠使点B与点D重合,点C落在点G处.
(1)求证:△ABE≌△GBF;
(2)求GF的长.
第一页
上一页
74
75
76
77
78
下一页
最后一页
1065027
1065032
1065034
1065041
1065043
1065048
1065054
1065057
1065063
1065069