如图,铁路上A、B两站相距25千米,C、D两村庄视为两点,DA⊥AB于A,CB⊥AB于B,已知DA=15千米,CB=10千米,现要在铁路AB上修一个土特产品收购站E,收购站E到C、D两村庄的距离和最小值为( )
已知:如图,四边形ABCD中,∠ABC=60°,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P是对角线BD上的一个动点,则PE+PC的最小值为( )
如图,在四边形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数是( )
如图,牧童家在B处,A、B两处相距河岸的距离AC、BD分别为500m和300m,且C、D两处的距离为600m,天黑牧童从A处将牛牵到河边去饮水,在赶回家,那么牧童最少要走( )
如图,在锐角三角形ABC中AB=4| 2 |
如图,矩形ABCD中,AB=20,BC=10,若在AB、AC上各取一点N、M,使得BM+MN的值最小,这个最小值为( )
(2008·深圳)要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是
(2013·沈阳一模)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是
(2013·建邺区一模)如图,在梯形ABCD中,∠C=45°,∠BAD=∠B=90°,AD=3,CD=2| 2 |
(2013·惠山区一模)如图,在锐角△ABC中,AB=6| 2 |