数学
(2007·鄂尔多斯)有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);
(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.
(2006·遵义)一商场有A、B、C三种型号的先锋牌DVD和D、E两种型号的明基牌DVD,某中学准备从这两种品牌的DVD中各选购一种型号安装到各班教室.
品牌
先锋
明基
型号
A
B
C
D
E
单价(元)
600
400
250
500
200
(1)写出所有的选购方案(利用树状图或列表方法表示);
(2)如果(1)中的各种选购方案被选中的可能性相同,那么A型号DVD被选中的概率是多少?
(3)已知该中学用1万元人民币购买了先锋和明基两种品牌的DVD共32台(价格如下表),其中先锋牌DVD选A型号的,明基牌可选D或E型号,请你通过计算写出其中正确的购买方案,并求出购买到A型号DVD多少台?
(2006·中山)妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.
(1)你帮妞妞算算爸爸出“锤子”手势的概率是多少?
(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?
(3)妞妞和爸爸出相同手势的概率是多少?
(2006·浙江)有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.
(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
(2006·南宁)如图是小李发明的填图游戏,游戏规则是:把5,6,7,8四个数分别填入图中的空格中,使得网格中每行、每列的数字从左到右和从上到下都按从小到大的数序排列,那么共有
6
6
种不同的填法.
1
2
3
4
9
(2006·金华)北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”,现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子.
(1)小芳从盒子中任取一张,取到卡片欢欢的概率是多少?
(2)小芳从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名
字.用列表或画树形图列出小芳取到的卡片的所有可能情况,并求出两次都取到卡片欢欢的概率.
(2005·浙江)某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.
(1)写出所有选购方案(利用树状图或列表方法表示);
(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?
(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.
(2005·宁德)把大小和形状-模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3.将这两组卡片分别放入两盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树状图或列表法求解).
(2005·河北)请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:
(1)用树状图表示出所有可能的寻宝情况;
(2)求在寻宝游戏中胜出的概率.
(2014·宁波一模)重庆一中综合实践活动艺体课程组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)求这次接受调查的学生人数,并补全条形统计图;
(2)求扇形统计图中喜欢排球的圆心角度数;
(3)若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或画树状图的方法,求出刚好抽到一男一女的概率.
第一页
上一页
184
185
186
187
188
下一页
最后一页
922558
922559
922560
922561
922562
922563
922564
922565
922566
922567