数学
探究证明:
如图,△ABC为⊙O的内接三角形,AB为直径,过点C作CD⊥AB于点D,设AD=a.BD=b.
(1)分别a,b表示线段OC,CD;
(2)探求OC与CD表达式之间存在的数量关系.(用含a,b的式子表示).
归纳结论:
根据上面的观察计算、探究证明,你能得
a+b
2
与
ab
的大小关系是
a+b
2
≥
ab
a+b
2
≥
ab
.
实践应用:
要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.
如图,已知线段a.
(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC,以AB和BC分别为斜边和直角边,使AB=c,BC=a(要求保留作图痕迹,不必写出作法);
(2)若在(1)作出的Rt△ABC中,AB=10cm,BC=6cm,求AB边上的高.
如图,把矩形ABCD沿直线EF折叠,使点C与A重合.
(1)只使用直尺和圆规,作出折痕EF,其与AD交于F,BC于E,并作出点D的对应点D′.
(2)连接AE、CF,猜想四边形AECF是什么特殊四边形?并证明你的结论.
(3)当AB=12,AD=18时,求折痕EF长.
宽与长的比是
5
-1
2
的矩形叫黄金矩形,心理学测试表明,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法归纳出以下作图步骤:
第一步:作一个任意正方形ABCD;
第二步:分别取AD,BC的中点M,N,连接MN;
第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;
第四步:过E作EF⊥AD交AD的延长线于F,
(1)请你根据以上作图步骤画出图形;
(2)请证明矩形DCEF为黄金矩形,(可取AB=2)
在△ABC中,AB=m·AC,∠BAC=90°,BD是中线,AE⊥BD交BC于点E.
(1)如图1,当m=1时,探究BE与EC的数量关系,并加以证明;
(2)如图2,当m≠1时,探究BE与EC的数量关系,并加以证明.
如图单位为1的正方形网格中,△ABC,△ABD的顶点都在格点上.求证:∠ACB+∠ADB=45°.
如图1,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从C点出发,沿着CB边向点B以每秒4个单位长的速度运动.P、Q分别从A、C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).
(1)设四边形PCQD面积为y,求y与t的函数关系式;
(2)t为何值时,△PCQ与△ABC相似;
(3)如图2,以C点为原点,边CB、CA所在直线分别为x轴、y轴建立直角坐标系,当PD∥AB时,求点D的坐标.
在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm.
(1)求这个三角形的斜边AB的长和斜边上的高CD的长;
(2)求斜边被分成的两部分AD和BD的长.
如图,已知长方形ABCD中AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.
如图是一个食品包装盒的侧面展开图.
(1)请写出这个包装盒的多面体形状的名称
三棱柱
三棱柱
.
(2)根据图中所标的尺寸,计算这个多面体的侧面积.
第一页
上一页
58
59
60
61
62
下一页
最后一页
576373
576374
576375
576376
576377
576378
576379
576380
576381
576382