数学
(2008·长宁区二模)如图,阴影部分表示东西方向的一条笔直公路,点A、B表示公路北侧间隔100米的两根电杆所在的位置,点C表示电视塔所在的位置.小王在公路南侧自西向东沿直线行走,当他到达点P的位置时,点P、A、C在一条直线上,当他继续走120米到达点Q的位置时,点Q、B、C也在一条直线上.若AB∥PQ,且AB与PQ的距离是40米.求电视塔C到公路南侧所在直线PQ的距离?
(2008·宝安区二模)数学活动课上,老师带领学生测量教学大楼的高度.在阳光下,测得身高1.6米的某同学身高AB的影长BC
为1.2米,与此同时,测得教学楼DE的影长EF为18.5米.
(1)请你在图中用三角板画出此时教学楼DE在阳光下的投影EF.
(2)请你根据已测得的数据,求出教学楼DE的高度(精确到0.1米).
(2007·秀洲区一模)本题有2个小题,请你从中任选一题作答,如果两题都作答,你会浪费一部分时间!我们将按解答完整的题给分.
测量路灯的高度或河的宽度.说明:
①测量可以在有阳光的晴日里进行.
②测量者只备有若干根标竿及测量长度用的皮卷尺.
③画出相关图形,用a、b、c …等表示测量所得的数据.
题(1)小明和爸爸一起散步,发现小区新安装了漂亮的路灯.决定测量一下路灯的高度.请你帮助小明设计一个测量方案,并说明理由.
题(2)灵山乐园中的人工河欲建一座观赏桥,由于受条件限制,无法直接度量A、B间的距离(AB垂直河岸,河岸大致平行,B处这边是宽阔的平地),请你用学过的知识,设计一个测量方案,并说明理由.
(2007·密云县一模)在一块上、下底分别为10m、20m的梯形空地种植花木,如图(1)
(1)他们在△AMB和△DMC种满了茉莉花;在△AMD和△BMC地带上种植太阳花,单价为8元/m
2
,当△AMD种满后,共花了160元,请计算种满△BMC地带所需的费用.
(2)画一条直线将等腰梯形图(2)分为面积相等的两部分.
(2006·深圳模拟)阅读下面的短文,并回答下列问题
我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.
如图,甲、乙是两个不同的立方体,立方体都是相似体,它们的一切对应线段之比都等于相
似比(a:b).
设S
甲
、S
乙
分别表示这两个立方体的表面积,则
S
甲
S
乙
=
6
a
2
6
b
2
=(
a
b
)
2
,又设V
甲
、V
乙
分别表示这两个立方体的体积,则
V
甲
V
乙
=
a
3
b
3
=(
a
b
)
3
.
(1)下列几何体中,一定属于相似体的是
A
A
A、两个球体B、两个圆锥体C、两个圆柱体D、两个长方体.
(2)请归纳出相似体的三条主要性质:
①相似体的一切对应线段(或弧)长度的比等于
相似比
相似比
;
②相似体表面积的比等于
相似比平方
相似比平方
;
③相似体体积的比等于
相似比立方
相似比立方
.
(3)寒假里,康子帮母亲到市场去买鱼,鱼摊上有一种鱼,个个都长得非
常相似,现有大小两种不同的价钱,如下图所示,鱼长10厘米的每条10元,鱼长13厘米的每条15元.康子不知道买哪种更好些,你能否帮他出出主意.
如图,某同学身高1.6米,由路灯下向前步行4米,发现自己的影子长有2米,问此路灯有多高?
如图,在水平桌面上的两个“E”,当点P
1
,P
2
,O在一条直线上时,在点O处用①号“E”(大“E”)测得的视力与用②号“E”(小“E”)测得的视力效果相同.
(1)△P
1
D
1
O与△P
2
D
2
O相似吗?
(2)图中b
1
,b
2
,l
1
,l
2
满足怎样的关系式?
(3)若b
1
=3.2cm,b
2
=2cm,①号“E”的测量距离l
1
=8m,要使得测得的视力相同,则②号“E”的测量距离l
2
应为多少?
第一页
上一页
29
30
31
32
33
170608
170609
170610
170612
170613
170614
170616