数学
2009年4月1日,合武铁路正式建成通车.“和谐号”高速列车武汉到合肥只需2小时,为此,武汉到合肥的时间缩短了8小时.此列车有588座,列车运行每趟的上座率不低于50%.若票价定为120元/票,每趟可卖500张票;若每票涨价1元,则每趟少卖2张票.设每张票涨价为x元(x为正整数).
(1)请写出每趟的收入y(元)与x之间的函数关系式,并求出自变量的取值范围;
(2)现要求某趟列车的收入为68000元,且票价尽量低,求此时的票价.
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿的市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.
(1)写出图一表示的市场售价与时间的函数关系式P;写出图二表示的种植成本与时间的函数关系式Q;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x(元),日销售量为y(件).
(1)写出日销售量y(件)与销售单价x(元)之间的函数关系式;
(2)设日销售的毛利润(毛利润=销售总额-总进价)为P(元),求出毛利润P(元)与销售单价x(元)之间的函数关系式;
(3)在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;
(4)观察图象,说出当销售单价为多少元时,日销售的毛利润最高是多少?
武汉银河影院对去年贺岁片《非诚勿拢》的售票情况进行调查:若票价定为20元/张,则每场可卖电影票400张,若单价每涨1元,每场就少售出8张,设每张票涨价x元(x为正整数).
(1)求每场的收入y与x的函数关系式;
(2)设某场的收入为9000元,此收入是否是最大收入?请说明理由;
(3)请借助图象分析,售价在什么范围内每趟的总收入不低于8000元?
某商店将每个进价为10元的商品,按每个18元销售时,每天可卖出60个,经调查,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?
某汽车制造厂投资200万元,成功地研制出一种市场需求量较大的汽配零件,并投入资金700万元进行批量生产.已知每个零件成本为20元.通过市场销售调查发现:当销售单价定为50元时,年销售量为20万件;销售单价每增加1元,年销售量将减少1 000件.设销售单价为x(x<140)元,年销售量为y (万件),年获利为z (万元).
(1)试写出y与x之间的函数关系式;
(2)当年获利为120万元时,销售单价为多少元?
(3)当销售单价定为多少时,年获利最多?并求出年利润.
通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用y表示学生掌握和接受概念的能力,x表示提出概念和讲授概念的时间(单位:分),可有以下的关系式:y=
-0.1
x
2
+2.6x+43,(0<x≤10)
59,(10<x≤16)
-3x+107,(16<x≤30)
(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)一个数学难题,需要55(或以上)的接受能力,上课开始30分钟内,求能达到该接受能力要求的时间共有多少分钟?
(3)如果每隔5分钟测量一次学生的接受能力,填写下表:
x
5
10
15
20
25
30
y
53.5
53.5
59
59
59
59
47
47
32
32
17
17
再计算六个y值得平均值M,它能高于45吗?
A、B两个水管同时开始向一个空容器内注水.如图是A、B两个水管各自注水量y(m
3
)与注水时间x(h)之间的函数图象,已知B水管的注水速度是1m
3
/h,1小时后,A水管的注水量随时间的变化是一段抛物线,其顶点是(1,2),且注水9小时,容器刚好注满.请根据图象所提供的信息解答下列问题:
(1)直接写出A、B注水量y(m
3
)与注水时间x(h)之间的函数解析式,并注明自变量的取值范围:
y
A
=
2x(0≤x≤1)
( )
1
8
(x-1)
2
+2(1≤x≤9)
1
8
(x-1)
2
+2(1≤x≤9)
y
B
=
x
x
(
0≤x≤9
0≤x≤9
)
(2)求容器的容量;
(3)根据图象,通过计算回答,当y
A
>y
B
时,直接写出x的取值范围.
某大公司“五一”节慰问公司全体职工,决定到一果园一次性采购一种水果,其采购价y(元/吨)与采购量x(吨)之间的关系图象如图中折线ABC(不包括端点A、但包括端点C).
(1)求y与x之间的函数关系.
(2)若果园种植该水果的成本是2800元/吨,那么公司本次采购量为多少时,果园在这次买卖中所获利润最大?最大利润是多少?
某商场销售羊绒衫有旺季和淡季之分,并且标价越高,购买人数越少,把购买人数为零时的最低标价称为无效价格.现该商场以500元/件的价格购进了一批羊绒衫,旺季时以高于进价的某一价格出售,淡季时适当降价,以高于进价的另一价格出售.市场调查发现:①购买人数是羊绒衫标价的一次函数;
②旺季的无效价格是淡季无效价格的
4
3
倍;
③旺季商场以1200元/件价格销售时,商场能获取最大利润.
问:在淡季销售时,商场要获取最大利润,羊绒衫的标价应定为多少?
第一页
上一页
71
72
73
74
75
下一页
最后一页
167008
167009
167011
167013
167015
167017
167019
167021
167023
167025