数学
某施工单位计划用地砖铺设正方形广场地面ABCD(如图所示),广场四角白色区域为正方形,阴影部分为四个矩形,四个矩形的宽都等于正方形的边长,阴影部分铺绿色地砖,其余部分铺白色地砖.已知
AB=100m,设小正方形的边长为xm.
(1)铺绿色地砖的面积为
-8x
2
+400x
-8x
2
+400x
m
2
;铺白色地砖的面积为
8x
2
-400x+10000
8x
2
-400x+10000
m
2
(用含x的代数式表示);
(2)若铺绿色地砖的费用为每平方米20元,铺白色地砖的费用为每平方米30元,设铺广场地面的总费用为y元,求y关于x的函数解析式,并求所需的最低费用.
某种产品的年产量不超过1 000t,该产品的年产量与费用之间的函数图象是顶点在原点的抛物线的一部分(如图甲);该产品的年销量与销售单价之间的函数图象是线段(如图乙),若生产的产品都能在当年销售完,问该产品年产量为多少吨时,所获得的毛利润最大?(毛利润=销售额-费用)
某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:
①每个零件的成本价为40元;
②若订购量在100个以内,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;
③实际出厂单价不能低于51元.
根据以上信息,解答下列问题:
(1)当一次订购量为
550
550
个时,零件的实际出厂单价降为51元.
(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价-成本).
某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元∕件)
…
30
40
50
60
…
每天销售量y(件)
…
500
400
300
200
…
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-
1
5
x
2
+
8
5
x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离.
(1)请写出抛物线的开口方向、顶点坐标、对称轴;
(2)请求出球飞行的最大水平距离.
小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月内销售单价不变,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.
(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?
如图,已知:△ABC为边长是
4
3
的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒(t≥0).
(1)在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;
(2)如图2,当点A与点D重合时,作∠ABE的角平分线BM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.
(3)如图3,若四边形DEFG为边长为
4
3
的正方形,△ABC的移动速度为每秒
3
个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG-GD以每秒
2
3
个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA-AC于P点,则是否存在t的值,使得PC⊥EQ,若存在,请求出t的值;若不存在,请说明理由.
如图所示,世纪游乐园要建造一个直径为20m的圆形喷水池,计划在喷水池的周边靠近水面的位置安放一圈喷水头,使喷出的水柱在离池中心4m处达到最高,高度为6m.另外还要在喷水池的中心设计一个装饰物,使各方向喷来的水柱在此汇合,这个装饰物的高度是多少?
受我国经济刺激政策和全球经济复苏的影响,2009年我国房地产市场开始回暖,下图反映08年7月至09年6月我国70个大城市房价同比增长率变化情况(注:同比增长率是指房价与上一年同时期相比增长的百分比)
(1)看图分析:2008年7月房价比2007年7月的房价;2008年8月的房价比2008年7月的房价;(填“高”、“相等”、“低”、“不能确定”.)
(2)从图上可以看出:同比增长率与月份之间折线图可以“近似”的看成一段抛物线,以2008年7月的坐标为(0,7.0)建立平面直角坐标系.请你根据图中信息求出同比增长率与月份之间“近似”的函数关系式,并据此推算2009年9月同比增长率会达到多少?
(3)若从2008年7月到2008年9月房价持平,求从2009年7月开始到2009年9月房价月平均增长率.(结果精确到0.01,可能用到数据:
521
≈22.83
505
≈22.47
)
如图:有一张形状为梯形的纸片ABCD,上底AD长为4 cm,下底BC长为8 cm,高为8cm,点M是腰AB上的一个动点,过点M作MN∥BC,交DC于点N,设MN=xcm.
(1)若梯形AMND的高为h
1
,梯形MBCN的高为h
2
.则
h
1
h
2
=
x-4
8-x
x-4
8-x
;(用含x的式子表示)
(2)将梯形AMND沿MN折叠,点A落在平面MBCN内的点记为E,点D落在平面MBCN内的点记为F,梯形EF
NM与梯形BCNM的重叠面积为S,
①求S与x的关系式,并写出x的取值范围;
②当x为何值时,重叠部分的面积S最大,最大值是多少?
第一页
上一页
66
67
68
69
70
下一页
最后一页
166930
166932
166933
166934
166936
166937
166939
166941
166942
166943