数学
直线y=-
3
4
x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点匀速出发,同时到达A点,到达A时运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.
(1)直接写出A、B两点的坐标;求点P的速度.
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当s=
48
5
时,求出点P的坐标.
如图①,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次联结P、O、D三点所围成图形的面积为Scm
2
,点P运动的时间为t s.已知S与t之间的函数关系如图②中折线段OEFGHI所示.
阅读理解,并回答下列问题:
(1)从图②点E可以看出刚开始的时候,随着点P的运动,面积S并没有发生变化,由此可以判断点P的运动方向为
逆时针
逆时针
(填入顺时针或逆时针)
(2)从图②点F(6,4)可以得到:OD+OA=6;
1
2
OD×OA=4,且OD>3.由此可以得到OD、OA的长度,进一步分析,可以求得A、B两点的坐标:A(
2
2
,
0
0
)、B(
6
6
,
3
3
);
(3)探究1:是否存在某一时刻,直线PD将五边形OABCD分成周长相等的两部分?如果存在,简要说明这时点P的坐标;如果不存在,说明理由.
(4)探究2:是否存在某一时刻,直线PD将五边形OABCD分成面积相等的两部分?如果存在,求出直线PD的函数解析式;如果不存在,说明理由.
已知直角坐标系内的点A(4,1)、B(3,2),试分别在直线y=x和x轴上找点C、D使得四边形ABCD的周长最短.
(1)作图(并写出作法)
(2)写出C、D两点坐标.
已知直线AB与x轴、y轴分别交于点A(-1,0)、点B(0,
-
3
),O为坐标原点,∠ABO=30°.以线段AB为边在第三象限内作等边△ABC.
(1)求直线AB的解析式;
(2)求出点C的坐标;
(3)若在第三象限内有一点P(m,
-
1
2
),且△ABP的面积和△ABC的面积相等,求m的值.
已知长方形ABCO,O为坐标原点,点B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限且是直线y=2x+6上的一点,若△APD是等腰直角三角形.
(1)求点D的坐标;
(2)直线y=2x+6向右平移6个单位后,在该直线上,是否存在点D,使△APD是等腰直角三角形?若存在,请求出这些点的坐标;若不存在,请说明理由.
如图,直线l
1
过A(0,2),B(2,0)两点,直线l
2
:y=mx+b过点(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,设此三角形的面积为S,求S关于m的函数解析式,及自变量m的取值范围.
如图所示,矩形AOBC在直角坐标系中,O为原点,A在x轴上,B在y轴上,直线AB函数关系式为
y=-
4
3
x+8
,M是OB上的一点,若将梯形AMBC沿AM折叠,点B恰好落在x轴上的点B′处,C的对应点为C′.
(1)求出B′和M的坐标;
(2)求直线A C′的函数关系式;
(3)若⊙P的圆心P是直线AM上的一个动点,且⊙P与直线AB、x轴、y轴都相切,试求点P的坐标.
如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=
3
x-6
3
,分别与x 轴y轴相交于A、B两点.点C在射线BA上以3cm/秒的速度运动,以C点为圆心作半径为1cm的⊙C.点P以2cm/秒的速度在线段OA上来回运动,过点P作直线l垂直与x轴.
(1)求A、B两点的坐标;
(2)若点C与点P同时从点B、点O开始运动,经过了几秒,直线l与⊙C第一次相切;当直线l与⊙C第2次相切时求点P的坐标.
已知直线m的解析式为
y=-
3
3
x+1
与x轴、y轴分别交于A、B两点,以线段AB为直角边
在第一象限内作等腰Rt△ABC,∠BAC=90°,点P(1,a)为坐标系内一动点.
(1)画出直线m;
(2)求△ABC的面积;
(3)若△ABC与△ABP面积相等,求实数a的值.
如图,将边长为
2
的菱形ABCD纸片放置在平面直角坐标系中.已知∠B=45°,画出边AB沿y轴对折后的对应线段AB′,AB′与边CD交于点E;
(1)直接写出D点坐标;
(2)求出线段CB′的长;
(3)求点E的坐标.
第一页
上一页
90
91
92
93
94
下一页
最后一页
83504
83507
83509
83511
83514
83516
83518
83520
83523
83525