试题
题目:
如图,在正方形网格上有一个△DEF.
(1)作△DEF关于直线HG的轴对称图形;
(2)作△DEF的EF边上的高;
(3)若网格上的最小正方形边长为1,求△DEF的面积.
答案
解:(1)如图所示,△D′E′F′即为所求作的△DEF关于直线HG的轴对称图形;
(2)如图所示,DH为EF边上的高线;
(3)△DEF的面积=
1
2
×3×2=3.
解:(1)如图所示,△D′E′F′即为所求作的△DEF关于直线HG的轴对称图形;
(2)如图所示,DH为EF边上的高线;
(3)△DEF的面积=
1
2
×3×2=3.
考点梳理
考点
分析
点评
专题
作图-轴对称变换.
(1)根据网格结构找出点D、E、F关于直线HG的对称点D′、E′、F′的位置,然后顺次连接即可;
(2)根据网格结构以及EF的位置,过点D作小正方形的对角线,与FE的延长线相交于H,DH即为所求作的高线;
(3)DE为底边,点F到DE的距离为高,根据三角形的面积公式列式进行计算即可得解.
本题考查了利用轴对称变换作图,比较简单,熟练掌握网格结构准确找出对应点的位置是解题的关键.
作图题.
找相似题
(2012·江西) 如图,已知正五边形ABCDE,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹).
.
如图,
(1)作出△ABC关于直线m的对称图形△A
1
B
1
C
1
;
(2)已知每一个小正方形的边长是1,求边AB、BC、AC的长.
如图,在平面直角坐标系xOy中,A(3,4),B(1,2),C(5,1);
(1)在图中作出△ABC关于y轴的对称图形△A
1
B
1
C
1
.
(2)写出点A
1
,B
1
,C
1
的坐标(直接写答案)
A
1
(-3,4)
(-3,4)
B
1
(-5,1)
(-5,1)
C
1
(-1,2)
(-1,2)
.
(3)在图中作出△ABC关于x轴的对称图形△DEF.
(4)写出点D,E,F的坐标:D
(3,-4)
(3,-4)
,E
(1,-2)
(1,-2)
,F
(5,-1)
(5,-1)
.
平面直角坐标系中,△ABC的BC边平行于x轴,BC=2,点A的坐标为(-4,3),点B的坐标为(-3,1).
(1)直接写出C点的坐标:
(-1,1)
(-1,1)
;
(2)画出△ABC关于y轴对称的△A
1
B
1
C
1
,并写出A
1
、B
1
、C
1
的坐标.
如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴的对称图形.