试题
题目:
如图,在四边形ABCD中,P为BC的中点,试在CD边上找一点Q,使△APQ的周长最小.
答案
解:如图所示,点Q即为所求点.
解:如图所示,点Q即为所求点.
考点梳理
考点
分析
点评
轴对称-最短路线问题.
作PH⊥CD于点H,延长PH到点P′,使P′H=PH,连接AP′交CD于点Q,连接PQ,则D点Q就是△APQ的周长最小的点.
本题考查的是轴对称-最短路线问题,熟知两点之间线段最短是解答此题的关键.
找相似题
如图,已知直线l和点A、B,在直线l上找一点P,使△PAB的周长最小,请说明理由.
如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(2,3),点C的坐标是(0,3).
(1)作出四边形OABC关于y轴对称的图形,并标出点B对应点的坐标.
(2)在y轴上找一点P,使PA+PB的值最小,并求出点P的坐标.(要求不写作法,保留作图痕迹)
在直线m上找一点C,使CA+CB的值最小.
如图,P、Q为△ABC的边AB、AC上的两定点,在BC上求作一点M,使△PQM的周长最短(不写作法).
如图所示,∠ABC内有一点P,在BA、BC边上各取一点P
1
、P
2
,使△PP
1
P
2
的周长最小.