试题
题目:
如图,已知直线l和点A、B,在直线l上找一点P,使△PAB的周长最小,请说明理由.
答案
解:作法:
(1)作A关于l的对称点A′,
(2)连接A′B交l于点P.
则点P就是所要求作的点.
理由:在l上取不同于P的点P′,连接AP′、BP′.
∵A和A′关于直线l对称,
∴PA=PA′,P′A=P′A′,
而A′P+BP<A′P′+BP′
∴PA+BP<AP′+BP′
∴AB+AP+BP<AB+AP′+BP′
即△ABP周长小于△ABP′周长.
解:作法:
(1)作A关于l的对称点A′,
(2)连接A′B交l于点P.
则点P就是所要求作的点.
理由:在l上取不同于P的点P′,连接AP′、BP′.
∵A和A′关于直线l对称,
∴PA=PA′,P′A=P′A′,
而A′P+BP<A′P′+BP′
∴PA+BP<AP′+BP′
∴AB+AP+BP<AB+AP′+BP′
即△ABP周长小于△ABP′周长.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题.
由于△PAB的周长=PA+AB+PB,而AB是定值,故只需在直线l上找一点P,使PA+PB最小.如果设A关于l的对称点为A′,使PA+PB最小就是使PA′+PB最小.
解这类问题的关键是把两条线段的和转化为一条线段,运用三角形三边关系解决.
作图题.
找相似题
如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(2,3),点C的坐标是(0,3).
(1)作出四边形OABC关于y轴对称的图形,并标出点B对应点的坐标.
(2)在y轴上找一点P,使PA+PB的值最小,并求出点P的坐标.(要求不写作法,保留作图痕迹)
在直线m上找一点C,使CA+CB的值最小.
如图,P、Q为△ABC的边AB、AC上的两定点,在BC上求作一点M,使△PQM的周长最短(不写作法).
如图所示,∠ABC内有一点P,在BA、BC边上各取一点P
1
、P
2
,使△PP
1
P
2
的周长最小.
如图,A处为牧草地,B处是牧童的家,A,B两处距河岸的距离分别为AC=350m,BD=1250m,且AB两地的距离为1500m,天黑前牧童从A点将马牵到河边去饮水,再赶回家.为了使所走的路程最短,牧童应将马赶到河边的什么地点?请你在图中画出来;请你求出他要走的最短路程.