试题
题目:
菱形的周长是40cm,两邻角的比是1:2,则较短的对角线长
10cm
10cm
.
答案
10cm
解:如图,∵菱形的周长是40cm,
∴AB=40÷4=10cm,
∵两邻角的比是1:2,
∴∠B=
1
1+2
×180°=60°,
∵菱形的边AB=BC,
∴△ABC是等边三角形,
∴较短的对角线AC=AB=10cm.
故答案为:10cm.
考点梳理
考点
分析
点评
菱形的性质;等边三角形的判定与性质.
作出草图,先求出菱形的边长,再根据邻角互补求出较小的内角,从而判定出△ABC是等边三角形,根据等边三角形的三条边都相等解答即可.
本题考查了菱形的四条边都相等,邻角互补的性质,等边三角形的判定与性质,熟记性质是解题的关键,作出图形更形象直观.
找相似题
(2012·宜昌)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
如图,四边形ABCD中,BC>CD>DA,O为AB中点,且∠AOD=∠COB=60°,求证:CD+AD>BC.
如图,在等边三角形ABC中,BO,CO分别平分∠ABC,∠ACB,OE∥AB,OF∥AC,试说明BE=EF=FC.
已知,AB=BC,BD=BE,∠ABC=∠DBE=α,M、N分别是AD、CE的中点.
(1)如图1,若α=60゜,求∠BMN;
(2)如图2,若α=90゜,∠BMN=
45°
45°
;
(3)将图2的△BDE绕B点逆时针旋转一锐角,在图3中完成作图,则∠BMN=
45°
45°
.
如图,菱形ABCD中,∠B=60°,AB=2,点E、F分别是AB、AD上的动点,且满足BE=AF,接连EF、EC、CF.
(1)求证:△EFC是等边三角形;
(2)试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.