答案

证明:如图,在OC上截取OE=OD,连接DE,BE,
∵∠EOD=180°-∠AOD-∠COB=180°-60°-60°=60°,
∴△DOE是等边三角形,
又∵O为AB中点,
∴OA=OB,
在△AOD与△BOE中,
,
∴△AOD≌△BOE(SAS),
∴AD=BE,
在△DEC中,∠CED=180°-60°=120°,
∴∠CED>∠CDE,
∴CD>CE,
∴AD+CD>BE+CE>BC,
即CD+AD>BC.

证明:如图,在OC上截取OE=OD,连接DE,BE,
∵∠EOD=180°-∠AOD-∠COB=180°-60°-60°=60°,
∴△DOE是等边三角形,
又∵O为AB中点,
∴OA=OB,
在△AOD与△BOE中,
,
∴△AOD≌△BOE(SAS),
∴AD=BE,
在△DEC中,∠CED=180°-60°=120°,
∴∠CED>∠CDE,
∴CD>CE,
∴AD+CD>BE+CE>BC,
即CD+AD>BC.