试题
题目:
如图所示,在等边三角形ABC中,∠B、∠C的平分线交于点O,OB和OC的垂直平分线交BC于E、F,试探索BE、EF、FC的大小关系;并说明理由.
答案
解:结论:BE=EF=FC(1分)
理由是:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°(2分),
∵OC,OB平分∠ACB,∠ABC,
∴∠OBE=∠OCF=30°(3分),
∵EG,HF垂直平分OB,OC,
∴OE=BE,OF=FC(5分),
∴∠BOE=∠OBE=30°,∠COF=∠OCF=30°,
∴∠OEF=∠OFE=60°,
∴三角形OEF是等边三角形(8分),
∴OF=OE=EF,
∴BE=EF=FC(10分).
解:结论:BE=EF=FC(1分)
理由是:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°(2分),
∵OC,OB平分∠ACB,∠ABC,
∴∠OBE=∠OCF=30°(3分),
∵EG,HF垂直平分OB,OC,
∴OE=BE,OF=FC(5分),
∴∠BOE=∠OBE=30°,∠COF=∠OCF=30°,
∴∠OEF=∠OFE=60°,
∴三角形OEF是等边三角形(8分),
∴OF=OE=EF,
∴BE=EF=FC(10分).
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;等边三角形的判定与性质.
根据角平分线的定义可得出∠OBE=∠OCF=30°,再根据OB和OC的垂直平分线交BC于E、F,得出∠OEF=∠OFE=60°,则三角形OEF为等边三角形,测得出BE=EF=FC.
本题考查了线段垂直平分线的性质、角平分线的定义以及等边三角形的判定和性质,是基础知识要熟练掌握.
计算题;证明题.
找相似题
(2012·宜昌)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
如图,四边形ABCD中,BC>CD>DA,O为AB中点,且∠AOD=∠COB=60°,求证:CD+AD>BC.
如图,在等边三角形ABC中,BO,CO分别平分∠ABC,∠ACB,OE∥AB,OF∥AC,试说明BE=EF=FC.
已知,AB=BC,BD=BE,∠ABC=∠DBE=α,M、N分别是AD、CE的中点.
(1)如图1,若α=60゜,求∠BMN;
(2)如图2,若α=90゜,∠BMN=
45°
45°
;
(3)将图2的△BDE绕B点逆时针旋转一锐角,在图3中完成作图,则∠BMN=
45°
45°
.
如图,菱形ABCD中,∠B=60°,AB=2,点E、F分别是AB、AD上的动点,且满足BE=AF,接连EF、EC、CF.
(1)求证:△EFC是等边三角形;
(2)试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.