试题
题目:
如图,AB⊥a于B,DC⊥a于C,∠BMA=75°,∠DMC=45°,AM=DM.
求证:AB=CB.
答案
解:过点D作DE⊥AB于点E,
∵AB⊥a于B,DC⊥a于C,
∴四边形BCDE为矩形,
∵∠AMB=75°,∠DMC=45°,
∴∠AMD=60°,∠CDM=45°,
∵AM=DM,
∴△AMD是等边三角形,
∴AD=AM,∠ADM=∠MAD=60°,
则∠EAD=∠BAM+∠MAD=90°-75°+60°=75°,
∴∠EAD=∠BMA,
在△ADE和△MAB中,
∠DEA=∠ABM
∠EAD=∠BMA
AD=MA
,
∴△ADE≌△MAB(AAS),
∴DE=AB,
∵DE=BC,
∴AB=BC.
解:过点D作DE⊥AB于点E,
∵AB⊥a于B,DC⊥a于C,
∴四边形BCDE为矩形,
∵∠AMB=75°,∠DMC=45°,
∴∠AMD=60°,∠CDM=45°,
∵AM=DM,
∴△AMD是等边三角形,
∴AD=AM,∠ADM=∠MAD=60°,
则∠EAD=∠BAM+∠MAD=90°-75°+60°=75°,
∴∠EAD=∠BMA,
在△ADE和△MAB中,
∠DEA=∠ABM
∠EAD=∠BMA
AD=MA
,
∴△ADE≌△MAB(AAS),
∴DE=AB,
∵DE=BC,
∴AB=BC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等边三角形的判定与性质;矩形的判定与性质.
过点D作DE⊥AB于点E,可得四边形BCDE为矩形,然后根据∠AMB=75°,∠DMC=45°,可求∠AMD=60°,∠CDM=45°,而AM=DM,那么△AMD是等边三角形,于是∠ADM=∠MAD=60°,AM=AD,∠ADE=75°,利用AAS可证△ADE≌△MAB,可得AB=DE,继而可得AB=BC.
本题考查了全等三角形的判定和性质、矩形的判定与性质、等边三角形的判定和性质.解题的关键是作辅助线,构造矩形.
证明题.
找相似题
(2012·宜昌)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
如图,四边形ABCD中,BC>CD>DA,O为AB中点,且∠AOD=∠COB=60°,求证:CD+AD>BC.
如图,在等边三角形ABC中,BO,CO分别平分∠ABC,∠ACB,OE∥AB,OF∥AC,试说明BE=EF=FC.
已知,AB=BC,BD=BE,∠ABC=∠DBE=α,M、N分别是AD、CE的中点.
(1)如图1,若α=60゜,求∠BMN;
(2)如图2,若α=90゜,∠BMN=
45°
45°
;
(3)将图2的△BDE绕B点逆时针旋转一锐角,在图3中完成作图,则∠BMN=
45°
45°
.
如图,菱形ABCD中,∠B=60°,AB=2,点E、F分别是AB、AD上的动点,且满足BE=AF,接连EF、EC、CF.
(1)求证:△EFC是等边三角形;
(2)试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.