试题
题目:
如图,已知OA=10,P是射线ON上一动点(即P可在射线ON上运动),∠AON=60°.
(1)当OP=
10
10
时,△AOP为等边三角形.
(2)当OP=
5或20
5或20
时,△AOP为直角三角形.
(3)当OP为
20>OP>5
20>OP>5
时,△AOP为锐角三角形.
(4)当OP为
OP>20或0<OP<5
OP>20或0<OP<5
时,△AOP为钝角三角形.
答案
10
5或20
20>OP>5
OP>20或0<OP<5
解:(1)∵∠AON=60°,
∴当OP=OA=10时,△AOP为等边三角形;
故填:10;
(2)若AP⊥ON,
∵∠AON=60°,
∴OP=OA·cos60°=
1
2
×10=5;
若PA⊥OA,则OP=
OA
cos60°
=20,
∴当OP=5或20时,△AOP为直角三角形;
故填:5或20;
(3)由(2)可得:当OP满足20>OP>5时,△AOP为钝角三角形.
故填:20>OP>5;
(4)由(2)可得:当OP满足OP>20或0<OP<5时,△AOP为钝角三角形.
故填:OP>20或0<OP<5.
考点梳理
考点
分析
点评
等边三角形的判定;含30度角的直角三角形.
(1)有一内角为60度的等腰三角形为等边三角形;
(2)分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得OP的长;
(3)
此题考查了等边三角形的性质、直角三角形的性质以及三角函数等知识.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.
找相似题
等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为
30°或150°
30°或150°
.
已知Rt△ABC中,∠C=90゜,AB=2BC,则∠A=
30°
30°
.
如图,已知OA=a,P是射线ON上一动点(即P可以在射线ON上运动),∠AON=60°,填空:
(1)当OP=
a
a
时,△AOP为等边三角形;
(2)当OP=
1
2
a或2a
1
2
a或2a
时,△AOP为直角三角形;
(3)当OP满足
OP>2a或OP<
1
2
a
OP>2a或OP<
1
2
a
时,△AOP为钝角三角形.
(2011·本溪一模)如图,AF垂直平分BC于D,∠ACB=∠F=30°,AC=4cm,点M从点D出发以每秒1cm的速度向终点F
运动,设运动时间为t,△CMF的面积为S.
(1)求S与t之间的函数关系;
(2)连接BM,并延长交CF于P,当S=4
3
时,判断△CMP的形状.
(2011·东台市二模)在四边形ABCD中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.
思考验证:
(1)求证:DE=DF;
(2)在图1中,若G在AB上且∠EDG=60°,试猜想CE、EG、BG之间的数量关系并证明;
归纳结论:
(3)若题中条件“∠CAB=60°且∠CDB=120°”改为∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?(只写结果不要证明)
探究应用:
(4)运用(1)(2)(3)解答中所积累的经验和知识,完成下题:如图2,在四边形ABCD中,∠ABC=90°,∠CAB=∠CAD=30°,E在AB上,DE⊥AB,且∠DCE=60°,若AE=3,求BE的长.