试题
题目:
△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.
答案
解:△BDE是等边三角形.理由是
∵△ABC是等边三角形
∴∠A=∠B=∠C=60°
∵DE∥AC,
∴∠BED=∠A=60°,∠BDE=∠C=60°
∴∠B=∠BED=∠BDE
∴△BDE是等边三角形.
解:△BDE是等边三角形.理由是
∵△ABC是等边三角形
∴∠A=∠B=∠C=60°
∵DE∥AC,
∴∠BED=∠A=60°,∠BDE=∠C=60°
∴∠B=∠BED=∠BDE
∴△BDE是等边三角形.
考点梳理
考点
分析
点评
专题
等边三角形的判定与性质.
根据△ABC是等边三角形得出∠A=∠B=∠C=60°,利用DE∥AC,求证∠B=∠BED=∠BDE即可得出结论.
此题主要考查学生对等边三角形的判定与性质和平行线段性质的理解和掌握,难度不大,属于基础题.
证明题.
找相似题
如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是( )
如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )
如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,并与PC、PD交于点E、F,则有下列结论:①AD=BC;②等边△PEF;③∠CID=120°;④∠ECF=∠EDF,其中正确的有( )
在四边形ABCD中,∠DAB=∠CBA,∠CDA=90°,∠BCD=78°,AB=2AD,则∠CAD的度数为( )