试题
题目:
如图,在等边三角形ABC中,BO,CO分别平分∠ABC,∠ACB,OE∥AB,OF∥AC,试说明BE=EF=FC.
答案
证明:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵OE∥AB,OF∥AC,
∴∠OEF=∠ABC=60°,∠OFE=∠ACF=60°,
∴∠OEF=∠OFE,
∴∠EOF=60°,
∴△OEF为等边三角形,
∴OE=OF=EF,
∵BO,CO分别平分∠ABC,∠ACB,
∴∠ABO=∠OBE,∠ACO=∠OCF,
∵OE∥AB,OF∥AC,
∴∠ABO=∠BOE,∠ACO=∠COF,
∴∠OBE=∠BOE,∠OCF=∠COF,
∴OE=BE,OF=CF,
∴BE=EF=FC.
证明:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵OE∥AB,OF∥AC,
∴∠OEF=∠ABC=60°,∠OFE=∠ACF=60°,
∴∠OEF=∠OFE,
∴∠EOF=60°,
∴△OEF为等边三角形,
∴OE=OF=EF,
∵BO,CO分别平分∠ABC,∠ACB,
∴∠ABO=∠OBE,∠ACO=∠OCF,
∵OE∥AB,OF∥AC,
∴∠ABO=∠BOE,∠ACO=∠COF,
∴∠OBE=∠BOE,∠OCF=∠COF,
∴OE=BE,OF=CF,
∴BE=EF=FC.
考点梳理
考点
分析
点评
等边三角形的判定与性质.
由题可证△OEF为等边三角形,从而得到∠EOF=60°,OE=OF=EF.又因为BO,CO分别平分∠ABC,∠ACB,所以∠ABO=∠OBE,∠ACO=∠OCF.所以OE∥AB,OF∥AC,根据两直线平行,内错角相等,得到∠ABO=∠BOE,∠ACO=∠COF,即∠OBE=∠BOE,∠OCF=∠COF.根据等角对等边得OE=BE,OF=CF,所以BE=EF=FC.
本题利用了等边三角形的性质和判定,两直线平行的性质,角的平分线的性质,等腰三角形的性质和判定.
找相似题
如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是( )
如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )
如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,并与PC、PD交于点E、F,则有下列结论:①AD=BC;②等边△PEF;③∠CID=120°;④∠ECF=∠EDF,其中正确的有( )
在四边形ABCD中,∠DAB=∠CBA,∠CDA=90°,∠BCD=78°,AB=2AD,则∠CAD的度数为( )