试题

题目:
青果学院已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.
答案
解:∵△ABC为等边三角形,且AD=BE=CF,
∴AE=BF=CD,
又∵∠A=∠B=∠C=60°,
∴△ADE≌△BEF≌△CFD(SAS),
∴DF=ED=EF,
∴△DEF是等边三角形.
解:∵△ABC为等边三角形,且AD=BE=CF,
∴AE=BF=CD,
又∵∠A=∠B=∠C=60°,
∴△ADE≌△BEF≌△CFD(SAS),
∴DF=ED=EF,
∴△DEF是等边三角形.
考点梳理
等边三角形的判定与性质;全等三角形的判定与性质.
根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF是等边三角形.
本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.
证明题.
找相似题