试题

题目:
青果学院如图,△ABD和△BCD均是边长为2的等边三角形,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由.
答案
证明:(1)∵△ABD和△BCD都为正三角形,
∴AB=AD=BC=CD=BD,
∴四边形ABCD是菱形,
∴∠BDE=∠BCF=60°,BD=BC,
∵AE+DE=AD=2,而AE+CF=2,
∴DE=CF,
∴△BDE≌△BCF(SAS);

(2)∵△BDE≌△BCF,
∴∠DBE=∠CBF,BE=BF,
∵∠DBC=∠DBF+∠CBF=60°,
∴∠DBF+∠DBE=60°即∠EBF=60°,
∴△BEF为正三角形;
证明:(1)∵△ABD和△BCD都为正三角形,
∴AB=AD=BC=CD=BD,
∴四边形ABCD是菱形,
∴∠BDE=∠BCF=60°,BD=BC,
∵AE+DE=AD=2,而AE+CF=2,
∴DE=CF,
∴△BDE≌△BCF(SAS);

(2)∵△BDE≌△BCF,
∴∠DBE=∠CBF,BE=BF,
∵∠DBC=∠DBF+∠CBF=60°,
∴∠DBF+∠DBE=60°即∠EBF=60°,
∴△BEF为正三角形;
考点梳理
等边三角形的判定与性质;全等三角形的判定与性质.
(1)利用菱形的性质和正三角形的特点进行证明;
(2)△BEF为正三角形,可解用(1)全等的结论证明;
本题考查了等边三角形的判定与性质及全等三角形的判定与性质,难度一般,关键是利用菱形的性质和正三角形的特点进行证明.
证明题.
找相似题