试题
题目:
如图:D为等边△ABC内一点,DA=DB,BP=BC,∠BPD=30°.求证:BD平分∠PBC.
答案
证明:如图,连接DC、PC.
∵DA=DB,
∴∠DAB=∠DBA,
∵△ABC是等边三角形,
∴∠CAB=∠CBA=∠ACB=60°,AC=BC,
∴∠1=∠4.
∴在△ACD与△BCD中,
DA=DB
∠1=∠4
AC=BC
,
∴△ACD≌△BCD(SAS),
∴∠2=∠3=30°,
∴∠P=∠3=30°.
∵BP=BC,
∴∠BPC=∠BCP,
∴∠DPC=∠DCP,
∴PD=DC.
∴在△BDC与△BDP中,
BP=BC
BD=BD
DP=DC
,
∴△BDC≌△BDP(SSS),
∴∠4=∠5,即BD平分∠PBC.
证明:如图,连接DC、PC.
∵DA=DB,
∴∠DAB=∠DBA,
∵△ABC是等边三角形,
∴∠CAB=∠CBA=∠ACB=60°,AC=BC,
∴∠1=∠4.
∴在△ACD与△BCD中,
DA=DB
∠1=∠4
AC=BC
,
∴△ACD≌△BCD(SAS),
∴∠2=∠3=30°,
∴∠P=∠3=30°.
∵BP=BC,
∴∠BPC=∠BCP,
∴∠DPC=∠DCP,
∴PD=DC.
∴在△BDC与△BDP中,
BP=BC
BD=BD
DP=DC
,
∴△BDC≌△BDP(SSS),
∴∠4=∠5,即BD平分∠PBC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等边三角形的判定与性质.
如图,连接DC、PC.先证明△ACD≌△BCD,则∠2=∠3=30°,∠ADC=∠BDC;然后利用全等三角形的判定定理SSS证得△BDC≌△BDP,所以它们的对应角相等.
本题考查了全等三角形的判定与性质以及等腰三角形的性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
证明题.
找相似题
如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是( )
如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )
如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,并与PC、PD交于点E、F,则有下列结论:①AD=BC;②等边△PEF;③∠CID=120°;④∠ECF=∠EDF,其中正确的有( )
在四边形ABCD中,∠DAB=∠CBA,∠CDA=90°,∠BCD=78°,AB=2AD,则∠CAD的度数为( )