试题
题目:
如图,已知:AD=1,AB=2,DC=BC,∠DAC=∠CAB=∠DCB=60°,则AC=
3
3
.
答案
3
解:把△ADC绕点C逆时针旋转60°到△A′BC,则∠ACA′=60°,∠D=∠A′BC.
∵∠D+∠ABC=360°-∠DCB-∠DAB=180°,
∴∠A′BC+∠ABC=180°,
∴A、B、A′三点共线.
又∵∠CAB=∠ACA′=60°,
∴△ACA′是等边三角形,
∴AC=AB+AD=1+2=3.
故答案为3.
考点梳理
考点
分析
点评
专题
旋转的性质;等边三角形的判定与性质.
把△ADC绕点C逆时针旋转60°到△A′BC,证明A、B、A′三点共线,得出△ACA′是等边三角形,根据旋转的性质即可求解.
考查了旋转的性质和等边三角形的判定与性质,解题的关键是作辅助线将△ADC绕点C逆时针旋转60°到△A′BC.
计算题.
找相似题
如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是( )
如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )
如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,并与PC、PD交于点E、F,则有下列结论:①AD=BC;②等边△PEF;③∠CID=120°;④∠ECF=∠EDF,其中正确的有( )
在四边形ABCD中,∠DAB=∠CBA,∠CDA=90°,∠BCD=78°,AB=2AD,则∠CAD的度数为( )