试题
题目:
(2011·赤峰)如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为
3
3
.
答案
3
解:根据题意:BC=6,D为BC的中点;
故BD=DC=3.
有轴对称的性质可得:∠ADC=∠ADC′=60°,
DC=DC′=3,∠BDC′=60°,
故△BDC′为等边三角形,
故BC′=3.
故答案为:3.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);等边三角形的判定与性质.
根据中点的性质得BD=DC=3,再根据对称的性质得∠ADC′=60°,判定三角形为等边三角形即可求.
本题考查了翻折变换的知识,同时考查了等边三角形的性质和判定,判定出△BDC′为等边三角形是关键.
数形结合.
找相似题
如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是( )
如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )
如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,并与PC、PD交于点E、F,则有下列结论:①AD=BC;②等边△PEF;③∠CID=120°;④∠ECF=∠EDF,其中正确的有( )
在四边形ABCD中,∠DAB=∠CBA,∠CDA=90°,∠BCD=78°,AB=2AD,则∠CAD的度数为( )