试题
题目:
如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.
(1)求证:△DEF是等腰三角形;
(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.
答案
(1)证明:∵AB=AC,
∴∠B=∠C,
在△DBE和△ECF中,
BD=CE
∠B=∠C
BE=CF
,
∴△DBE≌△ECF,
∴DE=FE,
∴△DEF是等腰三角形;
(2)当∠A=60°时,△DEF是等边三角形,
理由:∵△BDE≌△CEF,
∴∠FEC=∠BDE,
∴∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B
要△DEF是等边三角形,只要∠DEF=60°.
所以,当∠A=60度时,∠B=∠DEF=60,
则△DEF是等边三角形.
(1)证明:∵AB=AC,
∴∠B=∠C,
在△DBE和△ECF中,
BD=CE
∠B=∠C
BE=CF
,
∴△DBE≌△ECF,
∴DE=FE,
∴△DEF是等腰三角形;
(2)当∠A=60°时,△DEF是等边三角形,
理由:∵△BDE≌△CEF,
∴∠FEC=∠BDE,
∴∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B
要△DEF是等边三角形,只要∠DEF=60°.
所以,当∠A=60度时,∠B=∠DEF=60,
则△DEF是等边三角形.
考点梳理
考点
分析
点评
等腰三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定.
(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;
(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.
此题主要考查了等腰三角形的判定,等边三角形的判定,关键是证明△DBE≌△ECF.
找相似题
已知∠AOB=30°,P为∠AOB内部一点,点P关于OA、OB的对称点分别为P
1
、P
2
,则△OP
1
P
2
是( )
三角形的任何一个角的平分线垂直于这个角所对的边,这个三角形是( )
P为∠AOB内一点,∠AOB=30°,P关于OA、OB的对称点分别为M、N,则△MON定是( )
下列说法不正确的是( )
△ABC的三边a,b,c满足a
2
+b
2
+c
2
=ab+bc+ac,则△ABC是( )