试题
题目:
(2013·广安)等腰三角形的一条边长为6,另一边长为13,则它的周长为( )
A.25
B.25或32
C.32
D.19
答案
C
解:①当6为底时,其它两边都为13,
6、13、13可以构成三角形,
周长为32;
②当6为腰时,
其它两边为6和13,
∵6+6<13,
∴不能构成三角形,故舍去,
∴答案只有32.
故选C.
考点梳理
考点
分析
点评
等腰三角形的性质;三角形三边关系.
因为已知长度为6和13两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在Rt△ABC中,AD⊥BC于D,F为线段AC上一点,BF交AD于E,要使AE=AF,则BF应满足的条件是
BF是∠ABC的角平分线
BF是∠ABC的角平分线
.(只需填一个条件)
如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BD=3cm,则DC=
3
3
cm.
△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB、AC边上的中线的长相等.其中正确的结论的序号是
①②③④
①②③④
.
等腰三角形的一个外角是140°,则此等腰三角形的三个内角的度数分别是
40°,70°,70°或40°,40°,100°
40°,70°,70°或40°,40°,100°
.