试题
题目:
(2009·襄阳)如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于( )
A.30°
B.40°
C.50°
D.70°
答案
B
解:∵AB∥CD,
∴∠DCF+∠BFC=180°,
∴∠BFC=70°,
∴∠EFA=70°,
又∵△AEF中,AE=AF,
∴∠E=∠EFA=70°,
∴∠A=180°-∠BFC-∠EFA=40°.
故选B.
考点梳理
考点
分析
点评
专题
三角形内角和定理;平行线的性质;等腰三角形的性质.
根据两直线平行,同旁内角互补得出∠BFC,根据AE=AF可得出∠E=∠EFA,根据三角形的内角和为180°可求∠A.
该题考查了平行线的性质及三角形内角和定理.
计算题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在Rt△ABC中,AD⊥BC于D,F为线段AC上一点,BF交AD于E,要使AE=AF,则BF应满足的条件是
BF是∠ABC的角平分线
BF是∠ABC的角平分线
.(只需填一个条件)
如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BD=3cm,则DC=
3
3
cm.
△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB、AC边上的中线的长相等.其中正确的结论的序号是
①②③④
①②③④
.
等腰三角形的一个外角是140°,则此等腰三角形的三个内角的度数分别是
40°,70°,70°或40°,40°,100°
40°,70°,70°或40°,40°,100°
.