试题
题目:
如图,已知:在△ABC中,AB=AC,D是BC边上任意一点,DF⊥AC于点F,E在AB边上,ED⊥BC于D,∠AED=155°,则∠EDF等于( )
A.50°
B.65°
C.70°
D.75°
答案
B
解:∵∠B=∠AED-∠BDE=155°-90°=65°,
又AB=AC,
∴∠C=∠B=65°,
∵DF⊥AC,ED⊥BC,
∴∠EDF=∠C=65°,
故选B.
考点梳理
考点
分析
点评
等腰三角形的性质;三角形的外角性质.
由于∠EDF、∠C同为∠EDC的余角,因此它们相等,欲求∠EDF,只需求得∠C或∠B的度数即可,已知了∠AED的度数,可直接利用三角形的外角性质来求得∠B的度数,由此得解.
综合运用了三角形的外角性质和等腰三角形的性质.注意:等角的余角相等,根据这一性质是发现角相等的一种常用方法.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在Rt△ABC中,AD⊥BC于D,F为线段AC上一点,BF交AD于E,要使AE=AF,则BF应满足的条件是
BF是∠ABC的角平分线
BF是∠ABC的角平分线
.(只需填一个条件)
如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BD=3cm,则DC=
3
3
cm.
△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB、AC边上的中线的长相等.其中正确的结论的序号是
①②③④
①②③④
.
等腰三角形的一个外角是140°,则此等腰三角形的三个内角的度数分别是
40°,70°,70°或40°,40°,100°
40°,70°,70°或40°,40°,100°
.