试题
题目:
如图,已知在等腰△ABC中,如果AB=AC,∠A=40°,DE是AB的垂直平分线,那么∠DBC=
30
30
度.
答案
30
解:∵AB=AC,且∠A=40°,
∴∠ABC=∠C=
180°-40°
2
=70°,
又DE是AB的垂直平分线,
∴AD=BD,
∴∠A=∠ABD=40°,
∴∠DBC=∠ABC-∠ABD=70°-40°=30°.
故答案为:30
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;等腰三角形的性质.
根据等边对等角,由已知的AB=AC得到∠ABC与∠C相等,由∠A的度数求出∠ABC的度数,然后由DE为AB的垂直平分线,根据线段垂直平分线的性质得到AD与BD相等,再根据等边对等角得到∠A与∠ABD相等,由∠ABC与∠ABD相减即可求出所求角的度数.
此题考查了等腰三角形的性质,线段垂直平分线的性质.其中线段垂直平分线性质为线段垂直平分线上的点到线段两端点的距离相等.
综合题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在Rt△ABC中,AD⊥BC于D,F为线段AC上一点,BF交AD于E,要使AE=AF,则BF应满足的条件是
BF是∠ABC的角平分线
BF是∠ABC的角平分线
.(只需填一个条件)
如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BD=3cm,则DC=
3
3
cm.
△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB、AC边上的中线的长相等.其中正确的结论的序号是
①②③④
①②③④
.
等腰三角形的一个外角是140°,则此等腰三角形的三个内角的度数分别是
40°,70°,70°或40°,40°,100°
40°,70°,70°或40°,40°,100°
.