试题
题目:
已知等腰三角形一边等于5,另一边等于9,它的周长是
19或23
19或23
.
答案
19或23
解:分两种情况:
1、当边的长为5的为腰时,周长=5+5+9=19;
2、当边的长为9的为腰时,周长=9+9+5=23.
经验证这两种情况都可组成三角形,都成立.
故填19或23.
考点梳理
考点
分析
点评
等腰三角形的性质;三角形三边关系.
因为题中没有确定底和腰,故要分两种情况进行做题,即把边长为5的作为腰和把边长为9的作为腰,然后分别求出周长.
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在Rt△ABC中,AD⊥BC于D,F为线段AC上一点,BF交AD于E,要使AE=AF,则BF应满足的条件是
BF是∠ABC的角平分线
BF是∠ABC的角平分线
.(只需填一个条件)
如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BD=3cm,则DC=
3
3
cm.
△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB、AC边上的中线的长相等.其中正确的结论的序号是
①②③④
①②③④
.
等腰三角形的一个外角是140°,则此等腰三角形的三个内角的度数分别是
40°,70°,70°或40°,40°,100°
40°,70°,70°或40°,40°,100°
.