试题
题目:
已知一等腰三角形两边为2,4,则它的周长
10
10
.
答案
10
解:①当腰长为2,底边为4时,三边为2、2、4,
2+2=4,不能构成三角形,此种情况不成立;
②当底边为2,腰长为4时,三边为2、4、4,
能构成三角形,此时三角形的周长=4+4+2=10;
故等腰三角形的周长为10.
故填10.
考点梳理
考点
分析
点评
专题
等腰三角形的性质.
由于已知的两边,腰长和底边没有明确,因此需要分两种情况讨论.
本题考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
分类讨论.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在Rt△ABC中,AD⊥BC于D,F为线段AC上一点,BF交AD于E,要使AE=AF,则BF应满足的条件是
BF是∠ABC的角平分线
BF是∠ABC的角平分线
.(只需填一个条件)
如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BD=3cm,则DC=
3
3
cm.
△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB、AC边上的中线的长相等.其中正确的结论的序号是
①②③④
①②③④
.
等腰三角形的一个外角是140°,则此等腰三角形的三个内角的度数分别是
40°,70°,70°或40°,40°,100°
40°,70°,70°或40°,40°,100°
.