试题
题目:
如图所示,在△ABC中,AB=AC,D,E分别是AB,AC上的点,DE⊥AC,EF⊥BC,∠BDE=130°,则∠DEF=
70
70
度.
答案
70
解:∵∠BDE=130°,DE⊥AC,EF⊥BC,
∴∠AED=∠CED=∠EFC=90°
∴∠A=40°
∵AB=AC
∴∠C=∠B=70°
∴∠FEC=20°
∴∠DEF=70°.
考点梳理
考点
分析
点评
等腰三角形的性质.
利用等腰三角形的性质和直角三角形的性质即可求出答案.
此题考查了等腰三角形和直角三角形的性质,要注意三角形的内角与外角的关系.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在Rt△ABC中,AD⊥BC于D,F为线段AC上一点,BF交AD于E,要使AE=AF,则BF应满足的条件是
BF是∠ABC的角平分线
BF是∠ABC的角平分线
.(只需填一个条件)
如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BD=3cm,则DC=
3
3
cm.
△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB、AC边上的中线的长相等.其中正确的结论的序号是
①②③④
①②③④
.
等腰三角形的一个外角是140°,则此等腰三角形的三个内角的度数分别是
40°,70°,70°或40°,40°,100°
40°,70°,70°或40°,40°,100°
.