试题
题目:
如图,在△ABC中,AB=AC,D为BC边上一点,且∠BAD=30°,若AD=DE,∠EDC=33°,则∠DAE的度数为
72
72
°.
答案
72
解:设∠C=x,
∵AB=AC,
∴∠B=∠C=x,
∴∠AED=x+33°,
∵AD=DE,
∴∠DAE=∠AED=x+33°
根据三角形的内角和定理,得x+x+(30°+x+33°)=180°
解得x=39°,
则∠DAE=72°.
故答案为:72.
考点梳理
考点
分析
点评
等腰三角形的性质.
先根据三角形外角性质,用∠C表示出∠AED,再根据等边对等角和三角形内角和定理,列出等式即可求出∠C的度数,再求∠DAE也就不难了.
考查了等腰三角形的性质,此题能够根据等腰三角形的性质以及三角形的外角的性质,用同一个未知数表示各角,进一步根据三角形的内角和定理列方程求解.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
如图,在Rt△ABC中,AD⊥BC于D,F为线段AC上一点,BF交AD于E,要使AE=AF,则BF应满足的条件是
BF是∠ABC的角平分线
BF是∠ABC的角平分线
.(只需填一个条件)
如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BD=3cm,则DC=
3
3
cm.
△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB、AC边上的中线的长相等.其中正确的结论的序号是
①②③④
①②③④
.
等腰三角形的一个外角是140°,则此等腰三角形的三个内角的度数分别是
40°,70°,70°或40°,40°,100°
40°,70°,70°或40°,40°,100°
.