试题
题目:
若有理数x满足方程|1-x|=1+|x|,则化简|x-1|的结果是
1-x
1-x
.
答案
1-x
解:①当x≤0时,|1-x|=1-x,1+|x|=1-x,满足题意;
②当0<x<1时,|1-x|=1-x,1+|x|=1+x,不满足题意;
③当x≥1时,|1-x|=x-1,1+|x|=1+x,不满足题意.
综上可一:x≤0,故|x-1|=1-x.
故答案为:1-x.
考点梳理
考点
分析
点评
专题
含绝对值符号的一元一次方程;非负数的性质:绝对值.
根据绝对值的性质,要化简绝对值,可以就x≤0,0<x<1,x≥1三种情况进行分析.
本题考查含绝对值的一元一次方程,有一定难度,解决此题的关键是能够根据x的取值范围进行分情况化简绝对值,然后根据等式是否成立进行判断.
分类讨论.
找相似题
(2008·厦门)已知方程|x|=2,那么方程的解是( )
解方程:|2x+1|-|x-5|=6.
探究发现
阅读下列解题过程并解答下列问题:
解方程|x+3|=2.
解:①若x+3>0时,原方程可化为一元一次方程x+3=2.∴x=-1;
②若x+3<0时,原方程可化为一元一次方程-(x+3)=2.∴x=-5;
③若x+3=0时,则原式中|0|=2,这显然不成立,∴原方程的解是x=-1或x=-5.
(1)解方程|3x-2|-4=0.
(2)若方程|x-5|=2的解也是方程4x+m=5x+1的解,求m
2
-4m+4的值.
(3)探究:方程|x+2|=b+1有解的条件.
解方程|x-1|=-2x+1.
解下列方程:
(1)|5x-2|=3;
(2)
|x|-1
5
-1=
6-|x|
5
.